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Multiparameter quantum estimation under dephasing noise
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The simultaneous quantum estimation of multiple parameters has recently become an essential aspect of
quantum metrology. Although the ultimate sensitivity of a multiparameter quantum estimation in a noiseless
environment can overcome the standard quantum limit that every classical sensor is bounded by, it is unclear
whether a quantum sensor has an advantage over a classical sensor under a realistic level of noise. In this study,
we present the framework of a simultaneous estimation of multiple parameters using quantum sensors under a
specific noisy environment. Three components of an external magnetic field are estimated, and we consider the
dephasing noise. We show that there is an optimal sensing time in a time-inhomogeneous noisy environment and
that its sensitivity can overcome the standard quantum limit.
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I. INTRODUCTION

Quantum estimation theory is a mathematical framework
behind quantum metrology and is important for scientific
studies and technological applications. Some of its required
tasks are minimizing the uncertainty of an estimation and
attaining an ultimate bound imposed by the fundamental laws
of quantum mechanics.

Both theoretical and experimental studies have been con-
ducted on single-parameter estimations [1–10]. One of the
practical applications of a single-parameter estimation is mea-
suring an external field such as a magnetic or an electric
field. When the resonance frequency of a solid-state qubit
is shifted by an external field, we can use a superposition
state of the qubit to estimate the amplitude of the external
fields based on a Ramsey-type measurement. With the use
of N individual qubits, we can decrease the uncertainty of
the estimation by δφ = O(N− 1

2 ), which is called the standard
quantum limit (SQL). Here, φ is a single parameter to be
estimated. Moreover, by exploiting the entanglement among
these N qubits, we can in principle obtain δφ = O(N−1) in
noiseless environments. This type of scaling is called the
Heisenberg limit (HL) [1,5,6].

However, because an entangled state is fragile against
decoherence, whether the entanglement is useful to decrease
the uncertainty of the estimation in a noisy environment is
not trivial. The effect of noise in single-parameter estimations
has been theoretically [2,10,11] and experimentally [7,12–15]
discussed. The most important noise in a solid-state qubit
is a dephasing noise. It is well known that the SQL cannot
be overcome in a time-homogeneous noisy environment [16]
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even with the use of an entangled sensor [2]. Recent studies
have shown that, if the noise is time-inhomogeneous, the
scaling of δφ = O(N−3/4) can be obtained by using entan-
gled sensors for single-parameter estimations, and thus it
overcomes the SQL [7,11,17,18]. The crucial feature of the
time-inhomogeneous noise is showing a quadratic behavior
as a function of time at the initial decay, which is called the
Zeno regime. When the interaction time between an entangled
sensor and a target field is on the order of this Zeno regime,
the sensitivity of the sensor can be quantum-mechanically
enhanced [11,17–19]. For an estimation of the amplitude of
the field, δφ = O(N−3/4) is considered to be the ultimate
scaling under the effect of time-inhomogeneous noise [19,20].

By contrast, multiparameter estimations have received sig-
nificant attention [21,22]. For example, estimations have been
made of the phase and phase diffusion (loss) [23–26], phase-
space displacements [27,28], multiple phases [22,29,30],
damping and temperature [31], waveforms [32], and operators
[33,34]. One of the practical applications of a multiparameter
estimation is to measure the vector magnetic fields caused by
biomaterials or a current in a circuit. These measurements are
particularly important for medical and materials sciences, as
discussed and demonstrated in Refs. [35,36].

In this study, we numerically investigate a multiparameter
estimation under the influence of dephasing noise. In particu-
lar, we consider the estimation of three components of a target
field φ by using an entangled sensor in a noisy environment. In
addition, we study the performance of an entangled sensor for
both time-homogeneous and time-inhomogeneous dephasing
noise [16]. Although numerical calculations of noisy quantum
systems with many qubits are difficult because the size of the
density matrix grows exponentially as the number of qubits
increases, recent studies have shown that a calculation is
tractable when the qubits are identical [37–39]. Note that such
a restriction does not compromise the optimality [40,41]. We
adopt this technique and investigate how the uncertainty scales
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as a function of the number of the qubits. Under the effect of
time-inhomogeneous dephasing noise, we obtain the scaling
δφ = O(N−3/4), which is the same as that of the ultimate
scaling for a single-parameter estimation under dephasing
noise. This implies that we can overcome the SQL for a
multiparameter estimation. Our analysis will provide a further
understanding of quantum metrology.

The rest of this paper is organized as follows: Section II
introduces our measurement framework for estimating mul-
tiple parameters simultaneously. The numerical results are
presented in Sec. III. Finally, we summarize our approach in
Sec. IV.

II. MULTIPARAMETER ESTIMATION FRAMEWORK

A. Dynamics of a sensor with N identical spins

We consider a sensor consisting of an ensemble of N
identical two-level systems. The two-level system at the nth
site can be characterized by the Pauli operators as J (n)

α = 1
2σ (n)

α

for α = {x, y, z}. The whole sensor is similarly characterized
by Jα = ∑

n J (n)
α . To be more specific, we assume that these

two-level systems are one-half spins and that the field to be
sensed is a three-dimensional magnetic field φ = (φx, φy, φz ).

The sensor dynamics without noise are governed by the
Hamiltonian

H (φ) = φxJx + φyJy + φzJz. (1)

The magnetic field provides the quantization axis of each
qubit. We assume a sensor experiencing noise is governed by
the quantum master equation

dρt (φ)

dt
= −i[H (φ), ρt (φ)] + L[ρt (φ)], (2)

where ρt (φ) is the density matrix of the sensor at time t . Here,
we take the natural unit system, or h̄ = 1. Furthermore, we
assume the following:

L[ρt (φ)] = −γt

N∑
n=1

[
a(n),

[
a(n), ρt (φ)

]]
, (3)

where γt characterizes the strength of the noise and

a(n) = ϕ · J (n) = ϕxJ (n)
x + ϕyJ (n)

y + ϕzJ
(n)
z , (4)

where a(n) is the operator acting on the nth spin and is
normalized such that [a(n)]2 = I, or ϕ2

x + ϕ2
y + ϕ2

z = 4.
We then consider a dephasing noise by assuming φ ‖ ϕ

where environmental noisy fields are applied along the quanti-
zation axis of the system. A similar noise has been considered
in single-parameter estimations [11,17,21]. This assumption
leads to a property in which H (φ) and a(n) commute, and
thus the sensor dynamics becomes tractable. Such a dephasing
noise is often considered as a dominant noise for solid-state
qubit systems and in a NMR.

Time-homogeneous and time-inhomogeneous noisy envi-
ronments [16] can be introduced by taking the noise strength
γt as

γt =
{
γ : time homogeneous
γ 2t : time inhomogeneous.

(5)

We provide detailed calculations for the dynamics of such
a sensor in Appendixes A and B.

B. Accuracy of estimation

The accuracy of the estimation of φ is evaluated by using
its covariance matrix, [V (φ)]α,β = 〈φαφβ〉 − 〈φα〉〈φβ〉. The
diagonal elements [V (φ)]α,α are variances (δφα )2, whereas
the off-diagonal elements are correlations between different
parameters. The quantum Cramér-Rao bound is a lower bound
of the covariance matrix in terms of the classical Fisher infor-
mation matrix (CFIM, or F) and quantum Fisher information
matrix (QFIM, or Q), such that

MV (φ) � [F(φ)]−1 � [Q(φ)]−1, (6)

where M is the number of repeated measurements within
total measurement time T . The first inequality is a classical
Cramér-Rao bound (CCRB), and the second is referred to
as a quantum Cramér-Rao bound (QCRB). Here, F is given
through [F(φ)]αβ = ∑

l
1

P(l|φ) [∂αP(l|φ)][∂βP(l|φ)], where
{α, β} = {x, y, z} in this work and P(l|φ) = Tr[�lρt (φ)] is
determined by a certain set of positive-operator-valued mea-
sures (POVMs) {�l}. When ρt (φ) can be decomposed into∑

l pl |l〉〈l|, Q is given by

[Q(φ)]α,β = 2
∑

pl +pl′ >0

〈l|∂αρt (φ)|l ′〉〈l ′|∂βρt (φ)|l〉
pl + pl ′

. (7)

Although the value of l is exponentially large (2N ) in this
study, we can reduce the calculation cost from 2N to N2

when the qubits are symmetric in terms of the permutation
operations on them, as described in detail in Appendixes A
and B. We calculate Eq. (7) in Appendix C. It is worth men-
tioning that the achievability of the QCRB with a sensor that
becomes a mixed state like in this study is not trivial. Let us
consider a symmetric logarithmic derivative (SLD) operator
Lφα

for a measurement of parameter φα , which is defined
by the following: ∂φα

ρt (φ) = [Lφα
ρt (φ) + ρt (φ)Lφα

]/2. To
achieve the QCRB (see Appendix D), a weak commutativity
(Tr[ρt [Lφα

, Lφβ
]] = 0 ∀ {α, β} ∈ {1, . . . , d}) is a necessary

and sufficient condition for a sensor of which state is pure
[22,42]. The relationship between the weak commutativity
of SLDs and the QCRB for a mixed-state sensor in the
case of collective measurements was discussed in Ref. [43].
Collective measurements of the magnetic fields have not
been commonly discussed and individual measurements have
typically been conducted [2,10,11,17–19], including in the
present study. We are afraid that the weak commutativity
condition of SLDs for a mixed state sensor in order to achieve
the QCRB is still an open question.

Therefore, to investigate the ultimate sensitivity bound, we
calculate Q. More specifically, we analyze

I ≡ Tr[[Q(φ)]−1]/M, (8)

which provides the lower bound of the total variance |δφ|2 =
|δφx|2 + |δφy|2 + |δφz|2 ≡ Tr[V (φ)] from Eq. (6).
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III. NUMERICAL RESULTS

A. Simultaneous versus individual scenarios

We consider both simultaneous and individual scenarios
for an estimation. For the simultaneous scenario, three com-
ponents of a field will be estimated simultaneously. The initial
state is set to ρt=0 = |ψ〉〈ψ |, where

|ψ〉 = N
(|GHZ〉x + |GHZ〉y + |GHZ〉z

)
. (9)

Here, N is the normalization constant and |GHZ〉k is defined
as follows:

|GHZ〉k =
∣∣λmax

k

〉 + ∣∣λmin
k

〉
√

2
, (10)

where |λmax
k 〉 and |λmin

k 〉 are the two eigenstates of Jk

(k = x, y, z) that correspond to the maximum and minimum
eigenvalues λmax

k and λmin
k , respectively. If there is no noise, an

entangled sensor using the state |ψ〉 provides the Heisenberg
scaling for the multiparameter estimation [22].

For the individual scenario, each component will be
estimated separately after repeated M/3 measurements. In
this case, we use the entangled state |GHZ〉k in Eq. (10)
(k = x, y, z) to measure the corresponding magnetic-field
component. This scheme is a direct application of the single-
parameter estimation to vector field sensing.

We call I with the initial state of ρt=0 as Isim for the simul-
taneous measurement scenario. For the individual scenario,
we similarly define Iind as

Iind = 1

M/3

(
Q−1

x + Q−1
y + Q−1

z

)
, (11)

where Qk = [Q(φ)]k,k (k = x, y, z) is obtained by setting
|GHZ〉k as the initial state.

We emphasize that our framework here differs from that in
Ref. [22], in which a noiseless case is considered, whereas we
extend its calculation technique to include a sensor under a
noisy environment.

B. Total variance under dephasing noise

We investigate the performance of the entangled sensor
introduced in Sec. III A for a multiparameter estimation under
the effect of dephasing noise. We examine the case of ϕ =
(2/

√
3, 2/

√
3, 2/

√
3) in Eq. (4) and φ = (0.01, 0.01, 0.01)

in Eq. (1). Here, we assume, as is usually the case, that the
necessary times for the initial-state preparation and readout
are negligibly small. We fix the total time to T = 100 and
investigate the time-homogeneous and time-inhomogeneous
noise cases.

Figure 1 shows Isim as a function of the measurement
time t for N = 20. Note that we are allowed to measure for
T and thus M = T/t . We investigate the cases γ = 0, 0.05,
and 0.1. In the absence of noise (γ = 0), the longer t always
gives the better measurements. When noise is present (γ 
= 0),
we found the minimum of Isim occurs as a function of t . In
addition, the optimal measurement time topt is a function of
N . topt for a time-homogeneous noise is shorter than topt for a
time-inhomogeneous noise.

We investigate topt
∗ as a function of N for both the simul-

taneous (∗ = sim) and individual (∗ = ind) scenarios in both

time homogeneous

time homogeneous

FIG. 1. Isim as a function of measurement time t at T = 100 and
N = 20. The cases at γ = 0.1 and 0.05 in both time-homogeneous
and time-inhomogeneous dephasing noisy environments are shown.
In addition, the values of Isim at γ = 0 are plotted for comparison.
Note that M = T/t .

cases of time-homogeneous and time-inhomogeneous noise.
Figure 2 shows that 1/topt

∗ is proportional to N (
√

N) in the
time-homogeneous (time-inhomogeneous) case at N � 10, as
expected [2,17]. We also found, however, that topt

sim behaves
differently at N < 10 in both the time-homogeneous and time-
inhomogeneous cases. We suspect that N < 10 is too small to
observe the expected dependencies. We define the minimum
of I∗ as Imin

∗ , and t∗, which gives Imin
∗ , is defined as topt

∗ . These
observations are consistent with the N dependence of Imin

∗ , as
shown in Fig. 3.

Figure 3 shows Imin
∗ (∗ = sim or ind) for γ = 0.05 at

t = topt
∗ , as a function of N . We observe the following for

a time-homogeneous case: (i) Imin
∗ becomes proportional to

N−1 at N � 10 or has the same dependence as the SQL, and
thus the entangled sensor has no benefit in terms of the N
scaling, and (ii) Imin

ind > Imin
sim at the same N , which implies

FIG. 2. 1/topt
∗ as a function of N for two cases of time-

homogeneous and time-inhomogeneous dephasing noisy environ-
ments. In addition, ∗ = sim or ind. The dotted lines show

√
N

dependence, and the solid lines indicate N dependence. We then fit
the data for N � 10.
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time homogeneous

time homogeneous

FIG. 3. Imin
∗ as a function of N in the time homogeneous and time

inhomogeneous dephasing noisy environments when γ = 0.05. To
show the SQL and HL dependencies, 1/T N (orange line, SQL) and
1/T N2 (blue line, HL) are plotted. The line 1/T N1.5 is also plotted
(cyan dotted line).

that a simultaneous measurement is beneficial. Such behavior
is consistent with the case of a single-parameter estimation in
which entangled sensors cannot overcome the SQL under the
effect of the time-homogeneous dephasing noise [2].

By contrast, we observe the following for the time-
inhomogeneous-noise case: (i) Imin

∗ is proportional to N−1.5

at N � 10, and thus the entangled sensor is beneficial in
terms of the N scaling, and (ii) Imin

ind > Imin
sim (although this

difference is small) at the same N , which implies that the si-
multaneous measurement is beneficial. Observation (i) (N−1.5

dependence) is a well-known scaling for time-inhomogeneous
dephasing for a single-parameter estimation [11,17]. Observa-
tion (ii) was reported for a noiseless case [22]. In the present
study, however, we show a reduction in the uncertainty of the
noisy cases.

IV. CONCLUSION

In conclusion, we analyzed the simultaneous estimation
of multiple parameters by using an entangled sensor in both
time-homogeneous and time-inhomogeneous dephasing noisy
environments and found that an entangled sensor is beneficial
in the latter, but not in the former.

Three components of a magnetic field are the multiple
parameters, which are sensed by using an ensemble of N
identical one-half spins that are entangled with each other.
By considering the symmetry in the permutation operations
on these spins, the calculation cost is drastically reduced
and becomes tractable. The entangled sensor is exposed to
target fields under the effect of a dephasing noise. We nu-
merically calculate the quantum Fisher information matrix
and investigate the lower bound of the total variance. When
a dephasing noise is present, it always prevents us from
achieving the Heisenberg limit. However, we found that our
entangled sensor can overcome the standard quantum limit in
a time-inhomogeneous dephasing noisy environment but not
in a time-homogeneous one.
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APPENDIX A. PERMUTATION SYMMETRIC SENSOR

We consider a sensor consisting of N identical parti-
cles where the permutation symmetry is taken as follows
[39,44,45]: The joint Hilbert space of the sensor is HN =
H (1) ⊗ · · · ⊗ H (N ) with dim(HN ) = 2N . Any quantum state
of the sensor can be given as follows:

|ψ〉 =
∑

m1,m2,...,mN

cm1,m2,...,mN |m1, m2, . . . , mN 〉, (A1)

where the product basis |m1, m2, . . . , mN 〉 = |m1〉 ⊗ |m2〉 ⊗
· · · ⊗ |mN 〉, with mn = ± 1

2 is the eigenvalue of J (n)
z . This basis

is an eigenstate of the spin operators J (n) and J (n)
z[

J (n)]2|m1, m2, . . . , mN 〉 = jn( jn + 1)|m1, m2, . . . , mN 〉,
(A2)

J (n)
z |m1, m2, . . . , mN 〉 = mn|m1, m2, . . . , mN 〉. (A3)

The above product basis can be represented by an irrep
basis, which consists of the total spin eigenstates [44,45]

J2| j, m, i〉 = j( j + 1)| j, m, i〉, (A4)

Jz| j, m, i〉 = m| j, m, i〉, (A5)

where | j, m, i〉 is the irrep basis, and j � N/2 is the total
angular momentum, |m| � j. For each j, the quantum number
i = 1, . . . , d j

N , where

d j
N = N!(2 j + 1)

(N/2 − j)!(N/2 + j + 1)!
(A6)

is the number of degenerate irreps for each j [46] (the number
of ways to combine N particles that gets the total angular mo-
mentum j). |ψ〉 is now represented as |ψ〉 = ∑

c j,m,i| j, m, i〉.

FIG. 4. Block-diagonal form of an operator in the Dicke state
representation. The first block corresponds to j = N/2 and its sub-
dimension is ds = N + 1. The same is calculated for the remaining
blocks in the diagonal matrix. The off-diagonal terms are all zeros.
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TABLE I. Set of �(i) for i = 1, . . . , 27. Each �(i) is the coefficient of | . . .〉 〈. . . |, respectively.

m m′

〈 j − 1, m′ − 1| 〈 j − 1, m′| 〈 j − 1, m′ + 1| 〈 j, m′ − 1| 〈 j, m′| 〈 j, m′ + 1| 〈 j + 1, m′ − 1| 〈 j + 1, m′| 〈 j + 1, m′ + 1|
| j − 1, m − 1〉 �(3) �(20) �(17)

| j − 1, m〉 �(23) �(5) �(26)

| j − 1, m + 1〉 �(11) �(14) �(7)

| j, m − 1〉 �(2) �(19) �(16)

| j, m〉 �(22) �(1) �(25)

| j, m + 1〉 �(10) �(13) �(8)

| j + 1, m − 1〉 �(4) �(21) �(18)

| j + 1, m〉 �(24) �(6) �(27)

| j + 1, m + 1〉 �(12) �(15) �(9)

Considering the permutation symmetry where all the de-
generate irreps of each j are indistinguishable, i.e., c j,m,i =
c j,m,i′ ∀ i, i′ ∈ [1, d j

N ], then, the irrep basis | j, m, i〉 can be
gathered at the Dicke basis | j, m〉 [47], where

| j, m〉 = 1√
d j

N

d j
N∑

i=1

| j, m, i〉. (A7)

This basis is the eigenstate of the collective pseudospin oper-
ators

J2| j, m〉 = j( j + 1)| j, m〉, (A8)

Jz| j, m〉 = m| j, m〉. (A9)

Under this symmetry, the dimension now reduces to the
Dicke-basis dimension dD:

dD =
{

(N + 3)(N + 1)/4 for odd N
(N + 2)2/4 for even N.

(A10)

Hereinafter, we take J, Jα as the collective pseudospin opera-
tors in the dD dimension.

In the dD dimension, Jα has a structure of block matrices as
shown in Fig. 4. The first block corresponds to j = N/2, and
the explicit form of this block is a spin- j operator Sα, α =
{x, y, z}. The construction for the others is the same. For
example, for N = 3, we have

Jx =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

3/2 0 0 0 0√
3/2 0 2 0 0 0
0 2 0

√
3/2 0 0

0 0
√

3/2 0 0 0
0 0 0 0 0 1/2
0 0 0 0 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A11)

The same is applied for Jy and Jz.

APPENDIX B. DYNAMICS OF PERMUTATION SYMMETRIC SENSOR UNDER DEPHASING NOISE

We solve Eq. (2) from the main text in dD dimensions. Note that [H (φ), a(n)] = 0, and thus we first calculate only the Liouville
term (3). The following expressions are independent of the choice of the direction of the quantization axis, which is physically
determined by the target field to be measured. We rewrite this as follows:

∂ρt

∂t
= 2γt

(
N∑

n=1

a(n)ρt a
(n) − Nρt

)
. (B1)

We first show how to calculate the Liouvillian superoperator on the right-hand side of Eq. (B1). Using a(n) = ϕxJ (n)
x + ϕyJ (n)

y +
ϕzJ (n)

z , the summation term in Eq. (B1) is as follows (for short, we first keep ρt ):

N∑
n=1

a(n)ρt a
(n) =

N∑
n=1

[
ϕxJ (n)

x + ϕyJ (n)
y + ϕzJ

(n)
z

]
ρt

[
ϕxJ (n)

x + ϕyJ (n)
y + ϕzJ

(n)
z

]

=
N∑

n=1

[ϕx

2

(
J (n)
+ + J (n)

−
) + iϕy

2

(
J (n)
− − J (n)

+
) + ϕzJ

(n)
z

]
ρt [· · · ]

=
N∑

n=1

[
ϕ∗

wJ (n)
+ + ϕwJ (n)

− + ϕzJ
(n)
z

]
ρt

[
ϕ∗

wJ (n)
+ + ϕwJ (n)

− + ϕzJ
(n)
z

]
, (B2)
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FIG. 5. Sketch of the dynamic couplings given by a Dicke state, represented in terms of the coefficients �(i). We show the action of each
coefficient in the given Dicke state. All processes contribute to the coefficient �(1).

where J (n)
± = J (n)

x ± iJ (n)
y , ϕw = (ϕx + iϕy)/2. Finally, we have

N∑
n=1

a(n)ρt a
(n) =

N∑
n=1

[
(ϕ∗

w )2J (n)
+ ρt J

(n)
+ + |ϕw|2J (n)

+ ρt J
(n)
− + ϕ∗

wϕzJ
(n)
+ ρt J

(n)
z

+ |ϕw|2J (n)
− ρt J

(n)
+ + (ϕw )2J (n)

− ρt J
(n)
− + ϕwϕzJ

(n)
− ρt J

(n)
z

+ ϕ∗
wϕzJ

(n)
z ρt J

(n)
+ + ϕwϕzJ

(n)
z ρt J

(n)
− + ϕ2

z J (n)
z ρt J

(n)
z

]
. (B3)

Here, the terms corresponding to J (n)
+ ρt J

(n)
− , J (n)

− ρt J
(n)
+ , and J (n)

z ρt J (n)
z are local pumping, local emission, and local dephasing,

respectively. Now, using ρt = ∑
jmm′ p jmm′ | j, m〉〈 j, m′|, then for each j, m, m′, we have [39,44,45]

N∑
n=1

J (n)
k | j, m〉〈 j, m′|J (n)†

l = aN
kl | j, mk〉〈 j, m′

l | + bN
kl | j − 1, mk〉〈 j − 1, m′

l | + dN
kl | j + 1, mk〉〈 j + 1, m′

l |, (B4)

where k, l = {+,−, z}, m+ = m + 1, m− = m − 1, mz = m, and

aN
kl = Aj,m

k Aj,m′
l

1

2 j

(
1 + α

j+1
N

d j
N

2 j + 1

j + 1

)
= Aj,m

k Aj,m′
l

N/2 + 1

2 j( j + 1)
:= Aj,m

k Aj,m′
l �a, (B5)

bN
kl = B j,m

k B j,m′
l

α
j
N

2 jd j
N

= B j,m
k B j,m′

l

N/2 + j + 1

2 j(2 j + 1)
:= B j,m

k B j,m′
l �b, (B6)

dN
kl = D j,m

k D j,m′
l

α
j+1
N

2( j + 1)d j
N

= D j,m
k D j,m′

l

N/2 − j

2( j + 1)(2 j + 1)
:= D j,m

k D j,m′
l �d , (B7)

022602-6



MULTIPARAMETER QUANTUM ESTIMATION UNDER … PHYSICAL REVIEW A 102, 022602 (2020)

where

Aj,m
± =

√
( j ∓ m)( j ± m + 1), Aj,m

z = m, (B8)

B j,m
± = ±

√
( j ∓ m)( j ∓ m − 1), B j,m

z =
√

( j + m)( j − m), (B9)

D j,m
± = ∓

√
( j ± m + 1)( j ± m + 2), D j,m

z =
√

( j + m + 1)( j − m + 1), (B10)

�a = N/2 + 1

2 j( j + 1)
, �b = N/2 + j + 1

2 j(2 j + 1)
, �d = N/2 − j

2( j + 1)(2 j + 1)
, (B11)

and

α
j
N =

N/2∑
j′= j

d j′
N = N!

(N/2 − j)!(N/2 + j)!
, (B12)

with the degenerate d j
N = N!(2 j+1)

(N/2− j)!(N/2+ j+1)! .
We calculate explicitly Eq. (B4) for each j, m, m′, where

ϕ2
z

N∑
n=1

J (n)
z | j, m〉〈 j, m′|J (n)

z = ϕ2
z

(
mm′�a| j, m〉〈 j, m′| ← �(1)

+ B j,m
z B j,m′

z �b| j − 1, m〉〈 j − 1, m′| ← �(5)

+ D j,m
z D j,m′

z �d | j + 1, m〉〈 j + 1, m′|) ← �(6).

Here, the coefficients related to the term | j, m〉〈 j, m′| will be assigned (←) to �(1) and so on:

|ϕw|2
N∑

n=1

J (n)
− | j, m〉〈 j, m′|J (n)

+ = |ϕw|2(Aj,m
− Aj,m′

− �a| j, m − 1〉〈 j, m′ − 1| ← �(2)

+ B j,m
− B j,m′

− �b| j − 1, m − 1〉〈 j − 1, m′ − 1| ← �(3)

+ D j,m
− D j,m′

− �d | j + 1, m − 1〉〈 j + 1, m′ − 1|) ← �(4),

|ϕw|2
N∑

n=1

J (n)
+ | j, m〉〈 j, m′|J (n)

− = |ϕw|2(Aj,m
+ Aj,m′

+ �a| j, m + 1〉〈 j, m′ + 1| ← �(8)

+ B j,m
+ B j,m′

+ �b| j − 1, m + 1〉〈 j − 1, m′ + 1| ← �(7)

+ D j,m
+ D j,m′

+ �d | j + 1, m + 1〉〈 j + 1, m′ + 1|) ← �(9)

[note that J (n)
− becomes J (n)†

+ as in Eq. (B4)],

(
ϕ∗

w

)2
N∑

n=1

J (n)
+ | j, m〉〈 j, m′|J (n)

+ = (ϕ∗
w )2

(
Aj,m

+ Aj,m′
− �a| j, m + 1〉〈 j, m′ − 1| ← �(10)

+ B j,m
+ B j,m′

− �b| j − 1, m + 1〉〈 j − 1, m′ − 1| ← �(11)

+ D j,m
+ D j,m′

− �d | j + 1, m + 1〉〈 j + 1, m′ − 1|) ← �(12),

ϕ∗
wϕz

N∑
n=1

J (n)
+ | j, m〉〈 j, m′|J (n)

z = ϕ∗
wϕz

(
Aj,m

+ m′�a| j, m + 1〉〈 j, m′| ← �(13)

+ B j,m
+ B j,m′

z �b| j − 1, m + 1〉〈 j − 1, m′| ← �(14)

+ D j,m
+ D j,m′

z �d | j + 1, m + 1〉〈 j + 1, m′|) ← �(15),

ϕ2
w

N∑
n=1

J (n)
− | j, m〉〈 j, m′|J (n)

− = ϕ2
w

(
Aj,m

− Aj,m′
+ �a| j, m − 1〉〈 j, m′ + 1| ← �(16)

+ B j,m
− B j,m′

+ �b| j − 1, m − 1〉〈 j − 1, m′ + 1| ← �(17)

+ D j,m
− D j,m′

+ �d | j + 1, m − 1〉〈 j + 1, m′ + 1|) ← �(18),
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ϕwϕz

N∑
n=1

J (n)
− | j, m〉〈 j, m′|J (n)

z = ϕwϕz
(
Aj,m

− m′�a| j, m − 1〉〈 j, m′| ← �(19)

+ B j,m
− B j,m′

z �b| j − 1, m − 1〉〈 j − 1, m′| ← �(20)

+ D j,m
− D j,m′

z �d | j + 1, m − 1〉〈 j + 1, m′|) ← �(21),

ϕ∗
wϕz

N∑
n=1

J (n)
z | j, m〉〈 j, m′|J (n)

+ = ϕ∗
wϕz

(
mAj,m

− �a| j, m〉〈 j, m′ − 1| ← �(22)

+ B j,m
z B j,m′

− �b| j − 1, m〉〈 j − 1, m′ − 1| ← �(23)

+ D j,m
z D j,m′

− �d | j + 1, m〉〈 j + 1, m′ − 1|) ← �(24),

ϕwϕz

N∑
n=1

J (n)
z | j, m〉〈 j, m′|J (n)

− = ϕwϕz
(
mAj,m

+ �a| j, m〉〈 j, m′ + 1| ← �(25)

+ B j,m
z B j,m′

+ �b| j − 1, m〉〈 j − 1, m′ + 1| ← �(26)

+ D j,m
z D j,m′

+ �d | j + 1, m〉〈 j + 1, m′ + 1|) ← �(27).

We collect all coefficients corresponding to each |·, ·〉〈·, ·| and assign as �(i), where i = 1, . . . , 27 as shown in Table I and
Fig. 5.

Explicitly, we have the following:

�(1) = 2γt
(
ϕ2

z mm′�a − N
)
, �(10) = 2γt (ϕ∗

w )2Aj,m
+ Aj,m′

− �a, �(19) = 2γtϕwϕzA
j,m
− m′�a,

�(2) = 2γt |ϕw|2Aj,m
− Aj,m′

− �a, �(11) = 2γt (ϕ∗
w )2B j,m

+ B j,m′
− �b, �(20) = 2γtϕwϕzB

j,m
− B j,m′

z �b,

�(3) = 2γt |ϕw|2B j,m
− B j,m′

− �b, �(12) = 2γt (ϕ∗
w )2D j,m

+ D j,m′
− �d , �(21) = 2γtϕwϕzD

j,m
− D j,m′

z �d ,

�(4) = 2γt |ϕw|2D j,m
− D j,m′

− �d , �(13) = 2γtϕ
∗
wϕzA

j,m
+ m′�a, �(22) = 2γtϕ

∗
wϕzmAj,m′

− �a,

�(5) = 2γtϕ
2
z B j,m

z B j,m′
z �b, �(14) = 2γtϕ

∗
wϕzB

j,m
+ B j,m′

z �b, �(23) = 2γtϕ
∗
wϕzB

j,m
z B j,m′

− �b,

�(6) = 2γtϕ
2
z D j,m

z D j,m′
z �d , �(15) = 2γtϕ

∗
wϕzD

j,m
+ D j,m′

z �d , �(24) = 2γtϕ
∗
wϕzD

j,m
z D j,m′

− �d ,

�(7) = 2γt |ϕw|2B j,m
+ B j,m′

+ �b, �(16) = 2γtϕ
2
wAj,m

− Aj,m′
+ �a, �(25) = 2γtϕwϕzmAj,m′

+ �a,

�(8) = 2γt |ϕw|2Aj,m
+ Aj,m′

+ �a, �(17) = 2γtϕ
2
wB j,m

− B j,m′
+ �b, �(26) = 2γtϕwϕzB

j,m
z B j,m′

+ �b,

�(9) = 2γt |ϕw|2D j,m
+ D j,m′

+ �d , �(18) = 2γtϕ
2
wD j,m

− D j,m′
+ �d , �(27) = 2γtϕwϕzD

j,m
z D j,m′

+ �d

Thus, the equation can be solved. In the numerical calculation, we have extended the permutational-invariant quantum solver
(PIQS) library in QUTIP [39] by using the analysis described in this Appendix.

Finally, ρt (φ) is given by the evolution U (φ)ρtU †(φ).

APPENDIX C. CALCULATION OF THE QUANTUM
FISHER INFORMATION MATRIX

To calculate the QFIM, we need

∂kρt (φ) = ∂k[U (φ)ρtU
†(φ)]

= ∂kU (φ)ρtU
†(φ) + U (φ)ρt∂kU

†(φ). (C1)

Here, U (φ) = e−itH (φ). Some calculations [48] provide

∂kU (φ) = ∂ke−itH (φ) = −i
∫ t

0
due−i(1−u)H (φ)[∂kH (φ)]e−iuH (φ)

= −ie−iH (φ)
∫ t

0
dueiuH (φ)Jke−iuH (φ). (C2)

We introduce Ak defined as follows:

Ak =
∫ t

0
du eiuH (φ)Jke−iuH (φ). (C3)

Ak is a Hermitian operator [22,48,49].

We calculate the QFIM [Eq. (7) in the main text] by using
Ak . To obtain the explicit form of Eq. (C3) in this study, we
follow the method described in Refs. [48,49]. Therein, for
t � 1, we obtain

Ak ≈ tJk . (C4)

For general values of t , we obtain [48,49]

Ak = t
∑

{l|λl =0}
Tr[�†

l Jk]�l − i
∑

{l|λl 
=0}

1 − e−iλl t

λl
Tr[�†

l Jk]�l ,

(C5)

where � satisfies the eigenvalue equation:

H(φ)� ≡ [H (φ), �] = λ�. (C6)

Here, H(φ) is a Hermitian superoperator of H (φ), which
has d2

D real eigenvalues: λ1, . . . , λd2
D
. We denote the corre-

sponding eigenvectors as �l , where l = 1, . . . , d2
D, which are

orthogonal to each other.
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APPENDIX D. ACHIEVABILITY OF THE QUANTUM
CRAMÉR-RAO BOUND

We emphasize that the QCRB, in general, may be un-
achievable owing to the noncommutativity of the measure-
ments for different parameters. Given a symmetric logarith-
mic derivative (SLD) operator Lφα

for the measurement of
parameter φα , a weak commutativity condition for achieving
the QCRB is as follows:

Tr[ρt (φ)[L̂α, L̂β ]] = 0 ∀ {α, β} ∈ {1, . . . , d}, (D1)

where d is the number of parameters [22,42]. Otherwise, a
much stronger condition of [L̂α, L̂β ] = 0 is necessary [25].

The condition (D1) can be expressed by using Ak as follows
[22]:

Im[Tr[ρt AαAβ]] = 0. (D2)

This form of the achievability condition is more tractable.
As described in the main text, collective measurements on

many copies of the quantum states are needed to obtain the
QCRB for mixed states [43]. Such collective measurements
are not assumed for a standard setup of magnetic-field sens-
ing, and it is not clear whether we can achieve the QCRB with-
out collective measurements. Therefore, the achievability of
the QCRB is left as future work, and we focus on calculating
the ultimate sensitivity bound given by the QFIM.
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