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Abstract

An open quantum system is now attracting much attention because a quantum device such as
quantum computers and quantum sensors is an emerging technology. Here, we present a model of the
open system that shows either time-homogeneous Markovian relaxations or non-Markovian
relaxations depending on its parameters that we can control. This model is fully described with the
master equation that is analytically solvable. More importantly, this model can be easily realized with
molecules in isotropic liquids and measured with NMR techniques.

1. Introduction

Itis important to understand open systems both in science and technology because a quantum device such as
quantum computers and quantum sensors is an emerging technology: these devices are inevitably quantum
open systems however one tries to isolate them from environment. For not only theoretical interest but also
practical one, understanding of characteristics of dynamics of these open systems (time-homogeneous
Markovian, time-inhomogeneous Markovian or non-Markovian [1, 2]) is important in order to protect them
from their environments [3—5]: it is theoretically pointed out [6, 7] that an entangled sensor can beat the
standard quantum limit (SQL) with time-inhomogeneous Markovian noise while it usually shows the same
scaling as the SQL with Markovian noise. The SQL is the consequence of the central-limit theorem [8] and is
considered as a classical scaling. We note, however, that time-homogeneous Markovian dynamics let quantum
sensors achieve a sub SQL scaling in particular situations, see [2] for more details.

Both experimental and theoretical efforts to understand open systems have been carried out. There are the
experiments with ultra cold atoms [9], ions in traps [10], optics [11], and cold electric circuits [12] to study open
systems. Experimental controls of the degree of non-Markovianity in optics [13—15], ion traps [16], NV centers
indiamond [17-19], and NMR [20] are most important for our work. We have also reported some preliminary
results [21,22]. Among theoretical works, the pseudomode approach to an open-system such as [23, 24] and the
extended collision model [25] are important for our work.

We have been realizing an engineered environment and studying methods protecting a system from
environment [21, 26, 27]. Our engineered environment may be regarded as a realization of the pseudomode
[23,24] or the extended collision model [25]. So far we could only numerically solve the dynamics of a system in
the engineered environment. In this work, we provide analytical solutions of the systems in the various
engineered environments and compare the solutions with experimental observations in details. The systems
show either time-homogeneous Markovian, time-inhomogeneous Markovian, or non-Markovian relaxations
depending on their parameters. Our model is fully described with the Lindblad master equation [28] that is
analytically solvable [29-31]. Since a simpler model environment can be equivalent to a more complicated
environment in terms of a dynamics of an open system [24], our experimental realization of an open system
must be useful to understand the open system.
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Figure 1. Engineered environment. (a) The Markovian environment directly interacts with System I. (b) The Markovian environment
indirectly interacts with System I through System II.
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The rest of the paper is organized as follows. In section 2, we present a theoretical model to realize an open
system that show either time-homogeneous Markovian relaxations or non-Markovian relaxations depending
on its parameters, and also derive its analytical solution. Then we present its experimental realization using star-
topology molecules in isotropic liquids in section 3. The last section 4 is devoted to conclusion. In
section appendix, detailed calculations are shown.

2. Engineered environment

First of all, in order to avoid any confusions, we define the Markovianity and non-Markovianity as follows [1, 2].
If the information always flows from a system (that we are interested in) to an environment regardless its flow
rate, we call the environment Markovian. When its flow rate is constant, then it is a time-homogeneous
Markovian environment. On the other hand, when its flow rate is time dependent, then it is a time-
inhomogeneous one. If the information flows back to the system from the environment at some moments, then
itisregarded as a non-Markovian environment. Note that, although non-exponential decay was occasionally
considered as a non-Markovian property in some past literatures [6], we do not adopt such a definition in our
paper. Non-Markovianity is more rigorously measured by using a trace distance [32] or with the CP-

divisibility [33].

Weillustrate our idea to obtain various open systems or to engineer the environment in figure 1
[21,22,26,27], seealso [23, 24]. If a well-defined quantum system (such as a qubit) shows an exponential
relaxation, the system interacts with a surrounding short-time memory (or, Markovian) environment. On the
other hand, if its relaxation is non-exponential, the surrounding one should have a long-time memory [34]. We
realize such along-time memory environment in two steps: a well-defined primary system (hereafter called
System I) interacts only with an ancillary system (hereafter called System IT) and System Il is under the influence
of a Markovian environment. Note that System [ and II are parts of one composite system in our idea. We
regarded a proper kind of molecule in isotropic liquid as this composite system in our experiments discussed in
section 3. Our model may be considered as an abstraction of systems that show non-exponential relaxations
[16-19].

In our previous works [21, 27], we employed numerical simulations with the idea of quantum channels in
order to evaluate the above models. In this paper, we will start from the Lindblad master equation [28] and solve
itanalytically [29-31]. The Lindblad master equation is generally given as

d . e 1
L ck,j(zkpz; ~ Lz, p}), (1)
dt 5 2

where H is the system Hamiltonian, (¢ j) is a positive definite matrix, £; are the Lindblad operators to represent
the influence of an environment on the system, and [*, *] ({*, *}) denotes an (anti-) commutator. We take the
natural unit system where # = 1 in this paper.

We introduce a Markovian environment that induces random flip-flop transitions of the qubit. In this case,
the Lindblad master equation is given as

dp . O4p0% { 0y0% })
— = —i[H, p] + 22— = —, , 2
i i[H, p] Ei 7( 1 PR 2

o L ioy

where 0. = , 0% (k = x,,2) is a standard Pauli matrix acting on the qubit, and yis the flip-flopping rate.
This can be also interpreted as an amplitude damping channel [35].
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2.1. Markovian environment
Let us consider the simplest case where System I is a qubit (a nuclear spin in a magnetic field in section 3) and
interacts directly with the Markovian environment, as shown in figure 1(a). Equation (2) becomes

dp, [ o ] ( 04000k {UiajF })
—0 = —ilwZ, py |+ 3 0|2 — pot ) 3
i > Po - Yo 1 1 Po (3)

where 7, is the flip-flopping rate of System I caused by the Markovian environment. Because a nuclear spin
actingas System I in section 3 will be considered in a rotating frame of which frequency is the same as the
Larmor frequency of the spin, we will set w = 01in equation (3). This differential equation is easily solved by
using a Bloch vector representation of the density matrix p, = x> + y% + 2% + 7, where 0y is the identity
matrix of dimension 2. Equation (3) becomes

d{l+z x—1iy) v 22 x-1
di\x+iy 1—2z) 2\x+iy -2z )

dw(t)

A
where w(f) = x(f) + iy(¢). Then, we obtain

w(t) = w(0)e %2 and z(t) = z(0)e ",

Thus, System I shows a time-homogeneous, or exponential, relaxation under the influence of Markovian
environment.

or

,Ew(t), and m =
2 dt

—Y0z(1), (C))

2.2.Non-Markovian environment with a single qubit in System II

Let us consider the case shown in figure 1(b) where both System Iand II consist of a single qubit. We call thisa
(1 + 1) system. These qubits are realized with hetero-nuclear spins in one molecule in section 3 and they are
considered in the individual rotating frame. Therefore, the system Hamiltonian only consists of the interaction
between them. We assume this Hamiltonian as in the following form.

=28 %
4
where ] represents a strength of the interaction. This is a typical interaction between hetero-nuclear spins in one
molecule under the secular approximation [36]. Note also that this interaction can only cause pure dephasing [2]
on System I through System II. This interaction is essential for our idea and allows the Markovian environment
to influence System Ithrough System II. For simplicity, we assume that there is no direct influence of the
Markovian environment on System 1. The master equation is, then, given as

d .
= il )+ v @LYp LD~ (LDLY, pi)), 5)
+

where Eil) = 0y ® 0 /2,(k = +, —). Weassign the first (second) qubit to System I (II). This master equation
can be interpreted to realize the extended collision model of relaxation [25], as we discussed in [22]. The density
matrix of the total system is given as

g % : 11411
b= (% g rateg)el
1+ z 0 wy 0 ©
* 6
% 4 o o) o a1l 0 1+z 0 w]
+(x¢2+}12+212+2)® ] 0 1-z 0 [
0 w| 0 1721

where wy = x; + iy, (k = T, | ). We take this initial state because we intend to study the case when only
System I deviates from the maximally mixed state at the t = 0 moment. Then, substituting p; into the right
hand side of equation (5) gives

0 0 (—(y = Dwy + w)* 0
1 0 0 0 (ywp — (v + i)w)*
8| —(y — iDw + yw, 0 0 0 ’
0 wp — (v + i])Wl 0 0
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The master equation (5) is simplified to the following simultaneous differential equations,

dwy v ol dzy _

dt > M + M T 0,

dw, o Y+ dz

T =3 w), and o = 0. 7

Note that there is no time evolution of the z-component of the density matrix because H; x 0, ® 0.

Equation (7) can be solved as follows. It is compactly presented as
9 v and B2, (8)
dt dt

L (M
where w, = w, |

z
Z = (ZI) and
i
:__%+5%+§% ©)

M can be diagonalized with V,

such that

Sl e 0

A =VMV-!l= 2 )
0 A+
2

For example, the solution with the initial values of w;(0) = w;(0) = 1are givenas,

[—1? /2 : N7 2
wy(t) = e /2 cosh L7 Uty GrpWNT 0 ,
2 NEEE— 2
12 2 ) . 72 2
w, () = e "/2| cosh™ Lt | e BT N et |
2 AR e 2
Note that z; = z = 0in this case. When System II is traced out, the dynamics of System I, w(t), is given as,
[C12 A2 o 2.2
w(t) = wO+w® e*"/f/z(cosh NIty ! sinh L0 ) (10)
2 2 -1+ 2

Aswe increase /], the relaxation becomes slower and the behavior becomes closer to an exponential decay. This
may be understood in terms of the motional narrowing [36]. When System II flip-flops much more frequently
than the time scale determined by 1/, System Ihas no time to accumulate a significant phase changes between
the flip-flops. Since our time scale is 1/J and the average times of | 1) and | | ) states of System II are the same, the
phase fluctuations caused by System II through H; are averaged and effectively becomes zero when v/J > 1.
When /] < 1, the oscillations caused by the interaction between System Iand Il are seen, as shown in figure 2.

In order to classify relaxations, we define the trace distance D (p,(t), p,(¢)) between the state p,(f) and p,(t)
of a qubit whose initial states are p,(0) and p,(0), respectively.

D(p, (1), py(1)) = %Tr(\/(pa(t) — 2 (0, (1) — pyp (D). an

If there exists a pair of initial states p,(0) and p,(0) such that the time derivative of the trace distance between p,(¢)
and py(¢) ata certain tbecomes positive, the noise process is called non-Markovian [1, 32, 33]. From these
perspectives, we interpret the v dependence of [w (¢) | shown in figure 2(b), as follows.

We define py(t) as the density matrix at t when System I is traced out. In the above case, we find

Tr (0% + i0) py(1)) = w(e).

The initial state at t = 0 gives w(0) = 1, while thestateat t = oo gives w(co0) = 0since p;(c0) = /2. We
assign pi(f) obtained the above to p,(¢) in equation (11) and do 0/2 to p;(f). Note that the density matrix 0o/2

corresponds to (wy, w|) = (z1, z)) = (0, 0) and thus 0/2 does not evolve in time according to equation (8). We
find

Mm@mﬂbz%W@L
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Figure 2. (a) w(t)’s are plotted with y/J = 0.41 (green), 0.74 (red), 1.04 (blue), 2.21 (orange), and 4.42 (black). (b) |w (t)|’s are plotted
in single logarithmic form.

or the FID signal directly shows the trace distance between py(t) and 0y/2. When /] is large, the relaxation is

. dlogD(p,(t), 00 /2
exponential, or %ﬁw)

observed. On the other hand, when /] is small,

is negative constant. This means that the time-homogeneous relaxation is

dD(p;(1), 09 /2 . . o
LEON/D o be positive ata certain . This implies that the

.. . .. . dlogD(py(t), 00 /2) . . .
relaxation is non-Markovian. When «y/] is intermediate, %ﬂgﬂ/) is always negative, but time-dependent.

This implies that the time-inhomogeneous noisy environment is realized [1, 2, 34].

2.3.Non-Markovian environment with n qubits in System II
Let us consider the case when System II consists of n qubits. We callita (1 + #) system. We assume the
following.

+ Thereisno interaction among the qubits in System II.

+ Theindividual interactions between the qubit in System I and the qubits in System I are the same as that in
the (1 + 1) system.

+ The Markovian environments equally influence on the qubits in System II.

+ The qubits in System II are distinguishable.
The master equation is given as,

d ’ n ) 2 ® (Zf)
o= z[—l[f—” T |+ LD LD — (LDLD, ) ) (12)
=1 +

where
ng) =0 ® J(f)/2,
¢'th

=0y ®@ @ @ oy (k=x9, 2+, —).

On the other hand, the density matrix is 2" % 2" matrix and is given as,

e 3 o K

k=(1,1)" 2 2

Xk0x + Y0y + zx0; + 0p

(13)

n
——t—

Note that |k) runs from |7, ..., 75 [ T5- T U0 [T5eos L Thto|l,..,1,1 ). Asinthe (1 + 1) system, 2 is constant
because of o, ® o, type interactions. Therefore, the dynamics of p,, is reduced to the simultaneous differential
equations,
dw,
dt

where w, = (wy;, ;)T has 2" complex components and M, isa2" x 2" matrix. By taking into account the
structure of equation (12) and M; = M, M,,is given as,

= anm (14)
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M,=M®@ " V4t oy M® o™ 2 +... 4+ 05" Ve M

=—"Toy" + %Zagf)—i— %Z . (15)
¢ ¢
M, can be diagonalized with
V= ven, (16)
such that
A=AR07" V4 op@ ARy P4+ o Ve A (17)

2.4. Permutation symmetric non-Markovian environment
We relax the forth condition ‘The qubits in System IT are distinguishable.” In section 2.3 and consider the case
when System II is symmetric with respect to permutation operations. In other words, what we have to consider
is the dynamics in the symmetric subspace in the 2" dimensional space spanned by the basis | {1,] }"").
This permutation symmetric subspace is spanned by the following 1 + # vectors.
ﬂT ?’ll

iﬂlﬂ>zfﬂ£ZHﬁ?f®x (18)
2 2 n! 7

where Y denotes summing all permutations. We makea (1 4+ n) X 2" matrix

m:(ﬁj» gz_qug_Q)
2 2 2 2 2 2
Then, M,, is projected on this subspace as follows.
MY = KI'M,K, = _% [0 | 4SO/ 4 g/, (19)

where S,S'”) (k = x,7,2)is the spin-m matrix and I'” is the identity matrix of dimension d. Transformation in
equation (19) is based on the definition of S,gm). Note that M®isa(1 + n) x (1 + n)matrixand is much
smaller than M,,.

It is interesting to note that M,, and M®) give the same dynamics of System 1.

3. Experimental realization of non-Markovian environment

By using NMR, we demonstrate our idea to engineer the environment where System Iinteracts witha
Markovian environment through System Il in order to induce the time-inhomogeneous or non-Markovian
dephasing. Solute molecules in isotropic liquids are under influence of solvent molecules. However, we have to
take into account that these molecules are (1) under an external strong magnetic field, and (2) rapidly moving
and rotating. Therefore, the interactions between nuclear spins in the solute molecules and solvent molecules of
which time scales are much shorter than 1 /w (wis a Larmor frequency of the nuclear spin) are averaged out and
are effectively nullified: this is the motional narrowing effect [36]. Moreover, if the solvent molecules do not have
dipole moments, then the solute molecules’ nuclear spins can be approximately thought as in vacuum in the
sense that the solvent, or the environment, does not have an influence on the nuclear spins in them [36]. Note
also that the interactions among hetero-nuclear spins in a molecule solved in isotropic liquid are well described
with o, ® o, type ones [36] that are assumed in section 2.

Now, we add a small and controlled amount of ions that have magnetic dipole moments, such as Fe(III), into
solution. We call these ions magnetic impurities. These magnetic impurities are moving rapidly and randomly
because of the thermal motion, and thus they randomly flip-flop the solute molecules’ nuclear spins. So the
magnetic impurities play the role of the environment that generates random flip-flop motions of the nuclear
spins in solute molecules. The rate of these flip-flopping, v, is proportional to the concentration of the magnetic
impurities [21]. Note that the concentration of the magnetic impurities are controlled so that the magnetic
impurities do not show a motional narrowing effect, see figure 2. Moreover, these magnetic impurities are
rapidly running in the solution and thus this ‘environment’ has very short memory. Or, the magnetic impurities
act as almost ideal Markovian environment. Although adding magnetic impurities for controlling longitudinal
relaxations is a popular technique in NMR [36], the originality of our approach is that we use magnetic
impurities to engineer the environment for realizing time-inhomogeneous and non-Markovian environment.

3.1. Samples
As the solute molecule for the present study, we employed (a) 13C enriched chloroform (CHCl), (b) '>C
enriched methanol (CH;OH), and (¢) normal Tetramethylsilane (TMS, C,H;,Si) in acetone d-6. Note that the
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CHCl, CH;OH

215 Hz 140 Hz 6.6 Hz

_y _y

Frequency Frequency Frequency

(@) (b) (© (d)

Figure 3. (a)—(c) Sketches and their topology of three molecules employed in this paper. Open (filled) circles correspond to System I
(II) in figure 1. The spectra of these samples without magnetic impurities are also shown. The black solid lines are without decoupling
and give /s, while the red dotted lines are with decoupling 'H spins. The y-axes are arbitrary. Note that not all peaks in the TMS
spectrum are visible because of small signal to noise ratio. (a) CHCl; (*Cenriched chloroform, n = 1,] = 2w 215 rad s ), (b)
CH;OH (**C enriched methanol, n = 3,] = 27140 rad s 1), (¢) C;H;,Si (normal Tetramethylsilane, n = 12,] = 27 6.6 rad s ). (d)
System Iand Il are in the Markovian environment generated by Fe(IIT) magnetic impurities (gray circles). System II can be effectively
removed by decoupling technique.

spins in Cl atoms in chloroform is magnetically inert, while that in O atom and those in C atoms in TMS are
spinless. In these molecules, the '>C or **Si spins (open circles in figure 3) correspond to System I, while the 'H
spins (filled circles) correspond to System II. About 5% of Si atoms in TMS is **Si and has a spin 1,/2. The qubit
number #’s of system Il are 1 (a), 3 (b), and 12 (c), while the interaction strengths J’s are 27 215 rad s 1), 27
140 rad s ' (b),and 27 6.6 rad s ' (c) [21]. These J’s were measured from the separations of the peaks in the
spectra (figure 3) obtained by Fourier transforming Free Induction Decay (FID) signals. System Iand Il are
surrounded by the Markovian environment generated by Fe(I1) magnetic impurities (gray circles), see
figure 3(d). When the 'H spins are decoupled, these spectra show only single peaks and indicate that the "H spins
were effectively nullified. See section 3.2, too. Note that when the "H spins are decoupled, the Larmor
frequencies of the '>C and *°Si spins in TMS are employed as the frequency standards [37]. Therefore, TMS is
one of the most popular compounds in NMR.

As we mentioned above, these molecules are rotating in solutions and the spins consisting of System I are
changing their positions. Therefore, the permutation symmetric non-Markovian environment model discussed
in section 2.4 must be employed for analyzing experimental data. Moreover, the Markovian environment
directly influences System I although it is smaller than that on System II because of the strong distance
dependence of the dipole—dipole interaction: System [ is farther from the magnetic impurities than System 11, as
schematically shown in figure 3(d). We may estimate the shortest distance between System I (II) and the
magnetic impurity, as follows. The magnetic moment of the ion is caused by unpaired electron on the electrical
orbit and thus it is reasonable to assume that the magnetic moment is on the surface of the ion. Therefore, the
distance between System Iand the magnetic moment is of the order of the sum of a Si atom radius (110 pm) and
a'H atom one (50 pm) and is of the order of 150 pm. On the other hand, this distance between System I and
the magnetic moment is of the order of the "H atom radius (50 pm).

From equation (4), the direct influence on System I from the magnetic impurities can be taken into account
by introducing the following M,.

M = 7%05@1 +M,, (20)

where 7, is the flip-flopping rate of System I directly caused by the Markovian environment. See appendix for
more details.
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3.2. Switching off non-Markovianity

The origin of the non-Markovian behavior of System s System II. Therefore, if we were able to remove
System II, it might be possible to switch off the non-Markovianity of the environment [31]. Of course, we
cannot physically separate the "H atoms from the molecules shown in figure 3. However, the influence from the
"H spins can be nullified by using a standard NMR technique called decoupling [36, 37].

We employed the WALTZ-16 pulse sequence [37] for decoupling. See, figure 4. The WALTZ-16 pulse
sequence consists of multiple series of + 7/2, —m, and 4 37/2-pulses without time intervals between them
unlike usual decoupling pulses in quantum information processing [3—5]. We also note that usual NMR
measurements are ensemble ones and that the system dynamics during the decoupling can be measured
continuously. The strength of these pulses in our experiments were Hy = 27 2.7 x 10° rad s~!in frequency
unit or the 'H spins rotated at H,¢under these pulses. Since the interaction strengths of our samples are at most
2m 215 rad s~ ' in frequency unit, they are much less than H,¢. Therefore, the 'H spins are effectively nullified in
average. These nullification can be confirmed from the fact that the spectra contains only single peaks, as shown
in figure 3, when the 'H spins are decoupled with the WALTZ-16. Remember that we measured J’s from the
peak separations. When the 'H spins are nullified, v, can be directly measured. We also note that there is no
principle limitation in H,¢strength and one can increase it if necessary.

(@) (b)

System [

WALTZ-16
System 11

> >

time time

Figure 4. Schematic of switching on/off non-Markovianity. (a) Switching off: the FID signal is measured under WALTZ-16
(decoupling) applied for System II (here, 'H spins). (b) Switching on: the FID signal is measured without decoupling System II. The
black boxes indicate 7/2-pulses that turn the magnetization of System I from the z-axis to the x-axis and initiate FID signals.

3.3.(1 4 1) system

The left panels in figure 5 shows the measured Free Induction Decay signals (hereafter FID’s) of '>Cin '°C
enriched CHCl; in acetone-d6 when H spins were decoupled. The red (black) points are the real (imaginary)
part of FID’s. The dashed lines are exponential fittings to the real parts of FID’s and we obtained ,/2’s as their
time constants. We also independently measured T;’s of H spins with the standard NMR technique called the
inverse-recovery method [36, 37]. These T, s are assigned to 7’s in theoretical calculations witha (1 4 1)
system. These are summarized in table 1.

The right panels in figure 5 shows FID’s of ?C when H spins were not decoupled, or with non-
Markovianity. The green (blue) lines are theoretically calculated real (imaginary) parts of FID’switha (1 + 1)
system. There is an excellent agreement between the measured and calculated FID’s. Note that there is no fitting
parameters except for the signal amplitude normalization.

Table 1. Chloroform parameters. C,,’s are the concentrations of Fe(III) impurity in
milli Mol unit (mM). v,’s were measured from FID signals when 'H spins were
decoupled, as shown in the left panels in figure 5. T}’s of "H spins were independently
measured with the standard NMR technique (the inverse-recovery method). ] = 2w

215rad s\

Cm 1/(70/2) T, of H
4 mM 0.17 s 0.21s
48 mM 0.10 s 6.5 ms
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Figure 5. FID signals of CHCl; (Chloroform). The real (imaginary) parts of FID signals are shown in red (black) points. The left panels
show FID’s when 'H spins are decoupled, while FID’s without decoupling are shown in the right panels. The dashed lines in the left
panels are exponential fittings to FID’s that provide y,’s. The green (blue) curves are calculated real (imaginary) parts of FID signals.
The blue curves are hidden by the other data and hardly visible.

Table 2. Methanol parameters. The measurement methods are the same as in table 1.
J=2m 140rads™ .

Cmn 1/(70/2) T, of H
12 mM 0.39 s 0.16 s
21 mM 0.37 s 93 ms
49 mM 0.10 s 34 ms
79 mM 0.13 s 20 ms

3.4.(1 4 3)system

Figure 6 shows the measured FID’s of the CH;OH samples and calculated ones witha (1 4 3) system like

figure 5. The parameters for calculations are summarized in table 2. The slight increase of 1 /(7,/2) from

Cn = 49t079 mM might be caused by the motional narrowing effect. However, it is not straightforward to
understand this quantitatively, which is kept as future research. Excellent agreement between the measured and
calculated FID’s are seen in figure 6, too. Note also that a close look (the inset of C;,, = 12 mM) reveals that FID’s
without decoupling are not simple damping oscillations. This is an evidence that the environment has along
memory as we will discuss in section 3.5 in more detail. We also observe that the envelope in the non-decoupled
case of C,, = 79 mM decays faster than that of C;, = 49 mM in spite of the longer 1/(vy/2) of C;, = 79 mM
than that of C;, = 49 mM. The faster decay of the envelope is caused by the shorter T, of H, or larger yin
equation (12). This observation enforces our idea: the role of System II in the phase relaxation of System I is
important.

3.5.(1 4+ 12) system
The excellent agreement between measured and calculated FID’s shown in figures 5 and 6 illustrates the
usefulness of our model to understand an open system with the environment that has along memory. When n
increasesina(l + ) system, this long memory is more evident: we will discuss it witha (1 + 12) system in
terms of an information (in our case, the transversal magnetization) flow [22].

Figure 7 shows FID’s of *°Si in TMS solved in acetone-d6 and those calculated witha (1 4 12) system. The
parameters are summarized in table 3. We again observed that vy, are not monotonous function of C,,,. We,
however, point out that the calculated FID signals with these measured ~,’s reproduced our measured FID ones

9
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Figure 6. FID signals of CH;OH (Methanol). The symbols are the same as in figure 5. The inset shows a close look between 0 and
50 ms.

Table 3. TMS parameters. The measurement methods are the same as in table 1.

J =27 66rads .

Cn 1/(70/2) T, ofH
0 mM 49 s 10s
11 mM 0.79 s 0.30 s
19 mM 1.0s 0.14 s
40 mM 0.83 s 70 ms

well, as shown in figure 7. The measured FID signals in the cases of C,,, = 0 and 11 mM appear noisier than
those of C,, = 19 and 40 mM.: this difference is caused by the differences of the number of measurements
accumulated in order to improve the signal to noise ratio.

There might be small oscillations in the FID signals of C,,, = 0.0 and 11 mM with non-Markovianity. We,
however, think that these are within our experimental errors and thus these are not significant.
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Figure 7. FID signals of °Si in C4H,Si (Tetramethylsilane, TMS) solved in acetone-d6. The symbols are the same as in figure 5.

The FID signals (0 mM Fe(III)) with (left panel) and without (right panel) decoupling 'H spins clearly show
our ability of switching on and off non-Markovian environment. The time derivative of the trace distance
%W becomes positive at a certain time ¢, and so this is the non-Markovian relaxation. In terms of the
information flow, we can interpret this behavior as follows. The information flows from System I to System II
and System I perfectlylosesitatt = 0.08 s. The reverse flow, however, occurs and System 1regains it at
t = 0.16 s. This losing and regaining the information repeated many times. In other words, when System Iloses
the information, System I keeps it: this is the clear evidence that our engineered environment has along
memory.

On the other hand, the FID signals (40 mM Fe(III)) clearly show our ability of switching on and off time-
dlog (D(p, (1), 00 / 2))
dt
non-positive but its value is time-dependent. It originates from the time inhomogeneous noise. In terms of the

inhomogeneous environment: The decay shown in the inset is non-exponential and is always
information flow, we can interpret this behavior as follows. The information continuously flows from System I
to (System II 4- the Markovian environment) and never reverses. Therefore, we may call it a Markovian process.
Its flow rate, however, is time-dependent: this is the time-inhomogeneous relaxation.
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The non-Markovian environment gradually changes to Markovian environment (but is time-
inhomogeneous) in increasing the magnetic impurity concentration, as seen from the FID’s of the sample with
11 and 19 mM Fe(III).

From the view point of the information flow, a (1 + n) system must show a Markovian relaxation without
the Markovian environment outside of System IIif # — o0, or System II has infinite capacity of storing
information [22].

4, Conclusion

In conclusion, we proposed a simple and practical model that shows time-(in)homogeneous Markovian and
non-Markovian relaxations as a function of controllable parameters. Moreover, we experimentally demonstrate
our idea with star topology molecules in isotropic liquids. The model consists of three parts: System Ito be
observed, System Il surrounding System Iand providing the memory of the interaction between System Iand
II, and Markovian environment. The dynamics of this system is analyzed with the Lindblad master equation that
can be solved analytically. There is an excellent agreement between theoretical calculations and experimental
results. Our model is useful to understand an open system, and this is essential for the realization of various
quantum mechanics based technology, such as quantum computation and quantum meteorology.
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Appendix
Wediscussa (1l + 2) system that includes the direct influence on System I from Markovian environment in
order to illustrate our idea of the permutation symmetric non-Markovian environment. The master equation is

given as,

de Z Yo(2 Eg)pzﬁ(o) - {'C(f)ﬁgg)) P21

+ Z( [ J= :m] +Z’Y(2£(f)Pz LY —(LoLy, pz}))’ .

where 7, is the flip-flopping rate of System I directly caused by the Markovian environment and
LY = 0, ® 5% /2.0nthe other hand, the density matrix is 2> x 2° matrix and is given as,

| (l—i—zkl wi )@ 1kl) (ki
kI1=T1,]

Pa=3 wuy 1 —zy 22
l+z1 0 0 0 wi 0 0 0
0 1+z 0 0 0 wi| 0 0
0 0 14z 0 0 0 W 0
—— 0 0 0 1+ 2z, 0 0 0 wi|
wrr 0 0 0 1 — Z]| 0 0 0
0 wr| 0 0 0 1— 21 0 0
0 0 wir 0 0 0 1 - 2 0
0 0 0 W 0 0 0 1 - 2|
D<+) wi
= (22)
W, D( |
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Next, substituting p, into the rhs of equation (21) gives

Ay 0 0 0 AX o0 0
0 A, 0 0 0 A5 0
0 0 A; 0 0 0 AX 0
1lo 0o 0 4w 0 0 0o A%
6o, 0 0 0 —A; 0 0 0
0 Ao, 0 0 0 —Ay 0 0
0 0 As 0 0 0 —As; 0
0 0 0 Agg O 0 0 —Ay
where
| i = (0 + 27) 1 1 0
51 N 1 N w11
1|Ae|_1 7 —5(0 +27) 0 5 wi
16 An| 8 5 0 (0 + 27) 5 |
Ags Wy
0 2 . —if = S(% + 27)

Note that the matrix in the rhs is equal to M, introduced in equation (20). Therefore, we obtain
dw, /
- = M WZ)
dr ?
where 1/?12 = (WTT’ Wil Wit Wu)T.
Let us consider the case when the two qubits in System II are symmetric,ie.| 1 |yand| | 1)are
indistinguishable. We introduce the Dicke basis as

0
1 > > 1 0
0 [T +ILT 2 0
1,1) = =\ 11,0) = —F7—"F = » |1, —1) = =14
Ly =111 =0 10 5 Clm-n=1n=|g
0 2 1
0
and thus K, is given as
1 0 0
0 — 0
K=, 1, L0, 0, -1)=| 2 |
0 Wil 0
0 0 1
Symmetrized WS is obtained as follows.
w1 0 0
WP =KW K =[ 0 MM
0 0 w|

wy +wp

Then, we can denote: w; = wy, wyp = ————, and w_; = wj|, respectively.

Now, we obtain the symmetrized M{* by applying K\ and K, onto M,, as follows.

J-tm+2n % 0
My = K'M;K = = (0 + 27) =
0 = —i] = 2(3 + 27)

1 .
= =500+ 21V + S + 480

Therefore, the dynamics of p, can also be obtained by solving

d(™M w1
d_ Wo | = MZ(S) Wwo |.
t\n 1 w_1

LBHoetal

(23)
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