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Abstract
Anopen quantum system is now attractingmuch attention because a quantumdevice such as
quantumcomputers and quantum sensors is an emerging technology. Here, we present amodel of the
open system that shows either time-homogeneousMarkovian relaxations or non-Markovian
relaxations depending on its parameters that we can control. Thismodel is fully describedwith the
master equation that is analytically solvable.More importantly, thismodel can be easily realizedwith
molecules in isotropic liquids andmeasuredwithNMR techniques.

1. Introduction

It is important to understand open systems both in science and technology because a quantumdevice such as
quantum computers and quantum sensors is an emerging technology: these devices are inevitably quantum
open systems however one tries to isolate them fromenvironment. For not only theoretical interest but also
practical one, understanding of characteristics of dynamics of these open systems (time-homogeneous
Markovian, time-inhomogeneousMarkovian or non-Markovian [1, 2]) is important in order to protect them
from their environments [3–5]: it is theoretically pointed out [6, 7] that an entangled sensor can beat the
standard quantum limit (SQL)with time-inhomogeneousMarkovian noise while it usually shows the same
scaling as the SQLwithMarkovian noise. The SQL is the consequence of the central-limit theorem [8] and is
considered as a classical scaling.We note, however, that time-homogeneousMarkovian dynamics let quantum
sensors achieve a sub SQL scaling in particular situations, see [2] formore details.

Both experimental and theoretical efforts to understand open systems have been carried out. There are the
experiments with ultra cold atoms [9], ions in traps [10], optics [11], and cold electric circuits [12] to study open
systems. Experimental controls of the degree of non-Markovianity in optics [13–15], ion traps [16], NV centers
in diamond [17–19], andNMR [20] aremost important for ourwork.We have also reported some preliminary
results [21, 22]. Among theoretical works, the pseudomode approach to an open-system such as [23, 24] and the
extended collisionmodel [25] are important for ourwork.

We have been realizing an engineered environment and studyingmethods protecting a system from
environment [21, 26, 27]. Our engineered environmentmay be regarded as a realization of the pseudomode
[23, 24] or the extended collisionmodel [25]. So far we could only numerically solve the dynamics of a system in
the engineered environment. In this work, we provide analytical solutions of the systems in the various
engineered environments and compare the solutionswith experimental observations in details. The systems
show either time-homogeneousMarkovian, time-inhomogeneousMarkovian, or non-Markovian relaxations
depending on their parameters. Ourmodel is fully describedwith the Lindbladmaster equation [28] that is
analytically solvable [29–31]. Since a simplermodel environment can be equivalent to amore complicated
environment in terms of a dynamics of an open system [24], our experimental realization of an open system
must be useful to understand the open system.
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The rest of the paper is organized as follows. In section 2, we present a theoreticalmodel to realize an open
system that show either time-homogeneousMarkovian relaxations or non-Markovian relaxations depending
on its parameters, and also derive its analytical solution. Thenwe present its experimental realization using star-
topologymolecules in isotropic liquids in section 3. The last section 4 is devoted to conclusion. In
section appendix, detailed calculations are shown.

2. Engineered environment

First of all, in order to avoid any confusions, we define theMarkovianity and non-Markovianity as follows [1, 2].
If the information alwaysflows from a system (that we are interested in) to an environment regardless itsflow
rate, we call the environmentMarkovian.When itsflow rate is constant, then it is a time-homogeneous
Markovian environment. On the other hand, when itsflow rate is time dependent, then it is a time-
inhomogeneous one. If the information flows back to the system from the environment at somemoments, then
it is regarded as a non-Markovian environment. Note that, although non-exponential decaywas occasionally
considered as a non-Markovian property in some past literatures [6], we do not adopt such a definition in our
paper. Non-Markovianity ismore rigorouslymeasured by using a trace distance [32] orwith theCP-
divisibility [33].

We illustrate our idea to obtain various open systems or to engineer the environment infigure 1
[21, 22, 26, 27], see also [23, 24]. If a well-defined quantum system (such as a qubit) shows an exponential
relaxation, the system interacts with a surrounding short-timememory (or,Markovian) environment. On the
other hand, if its relaxation is non-exponential, the surrounding one should have a long-timememory [34].We
realize such a long-timememory environment in two steps: a well-defined primary system (hereafter called
System I) interacts only with an ancillary system (hereafter called System II) and SystemII is under the influence
of aMarkovian environment. Note that SystemI and II are parts of one composite system in our idea.We
regarded a proper kind ofmolecule in isotropic liquid as this composite system in our experiments discussed in
section 3. Ourmodelmay be considered as an abstraction of systems that shownon-exponential relaxations
[16–19].

In our previous works [21, 27], we employed numerical simulationswith the idea of quantum channels in
order to evaluate the abovemodels. In this paper, wewill start from the Lindbladmaster equation [28] and solve
it analytically [29–31]. The Lindbladmaster equation is generally given as

   år
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whereH is the systemHamiltonian, (ck,j) is a positive definitematrix, j are the Lindblad operators to represent
the influence of an environment on the system, and [*, *] ({*, *}) denotes an (anti-) commutator.We take the
natural unit systemwhere ÿ=1 in this paper.

We introduce aMarkovian environment that induces random flip-flop transitions of the qubit. In this case,
the Lindbladmaster equation is given as
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x y ,σk (k=x, y, z) is a standard Paulimatrix acting on the qubit, and γ is theflip-flopping rate.
This can be also interpreted as an amplitude damping channel [35].

Figure 1.Engineered environment. (a)TheMarkovian environment directly interacts with SystemI. (b)TheMarkovian environment
indirectly interacts with SystemI through SystemII.

2

New J. Phys. 21 (2019) 093008 L BHo et al



2.1.Markovian environment
Let us consider the simplest case where SystemI is a qubit (a nuclear spin in amagnetic field in section 3) and
interacts directly with theMarkovian environment, as shown infigure 1(a). Equation (2) becomes
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where γ0 is the flip-flopping rate of SystemI caused by theMarkovian environment. Because a nuclear spin
acting as SystemI in section 3will be considered in a rotating frame ofwhich frequency is the same as the
Larmor frequency of the spin, wewill setω=0 in equation (3). This differential equation is easily solved by
using a Bloch vector representation of the densitymatrix r = + + +s s s sx y z0 2 2 2 2

x y z 0 , whereσ0 is the identity
matrix of dimension 2. Equation (3) becomes

g+ -
+ -

= -
-

+ -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟t

z x y

x y z

z x y

x y z
d

d

1 i

i 1 2

2 i

i 2
,0

or

g
g= - = -

( ) ( ) ( ) ( ) ( )w t

t
w t

z t

t
z t

d

d 2
, and

d

d
, 40

0

wherew(t)=x(t)+iy(t). Then, we obtain

= =g g- -( ) ( ) ( ) ( )w t w z t z0 e , and 0 e .t t20 0

Thus, SystemI shows a time-homogeneous, or exponential, relaxation under the influence ofMarkovian
environment.

2.2. Non-Markovian environmentwith a single qubit in SystemII
Let us consider the case shown infigure 1(b)where both SystemI and II consist of a single qubit.We call this a
(1+1) system. These qubits are realizedwith hetero-nuclear spins in onemolecule in section 3 and they are
considered in the individual rotating frame. Therefore, the systemHamiltonian only consists of the interaction
between them.We assume thisHamiltonian as in the following form.

s s
=

Ä
H J

4
,z z

1

where J represents a strength of the interaction. This is a typical interaction between hetero-nuclear spins in one
molecule under the secular approximation [36]. Note also that this interaction can only cause pure dephasing [2]
on SystemI through SystemII. This interaction is essential for our idea and allows theMarkovian environment
to influence SystemI through SystemII. For simplicity, we assume that there is no direct influence of the
Markovian environment on SystemI. Themaster equation is, then, given as

   å
r

r g r r= - + -


  [ ] ( { }) ( )( ) ( ) ( ) ( )

t
H

d

d
i , 2 , , 51

1 1
1

1
1 1 1

1

where  s s= Ä( ) 2k k
1

0 , (k=+,−).We assign thefirst (second) qubit to SystemI (II). Thismaster equation
can be interpreted to realize the extended collisionmodel of relaxation [25], as we discussed in [22]. The density
matrix of the total system is given as
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where = + =  ( )w x y ki ,k k k .We take this initial state becausewe intend to study the case when only
SystemI deviates from themaximallymixed state at the t=0moment. Then, substituting ρ1 into the right
hand side of equation (5) gives
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Themaster equation (5) is simplified to the following simultaneous differential equations,
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Note that there is no time evolution of the z-component of the densitymatrix becauseH1∝ σz⊗σz.
Equation (7) can be solved as follows. It is compactly presented as
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For example, the solutionwith the initial values of = = ( ) ( )w w0 0 1are given as,
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Note that = = z z 0 in this case.When SystemII is traced out, the dynamics of SystemI,w(t), is given as,
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Aswe increase γ/J, the relaxation becomes slower and the behavior becomes closer to an exponential decay. This
may be understood in terms of themotional narrowing [36].When SystemIIflip-flopsmuchmore frequently
than the time scale determined by 1/J, SystemI has no time to accumulate a significant phase changes between
theflip-flops. Since our time scale is 1/J and the average times of ñ∣ and ñ∣ states of SystemII are the same, the
phasefluctuations caused by SystemII throughH1 are averaged and effectively becomes zerowhen γ/J?1.
When γ/J<1, the oscillations caused by the interaction between SystemI and II are seen, as shown infigure 2.

In order to classify relaxations, we define the trace distance r r( ( ) ( ))D t t,a b between the state ρa(t) and ρb(t)
of a qubit whose initial states are ρa(0) and ρb(0), respectively.

r r r r r rº - -( ( ) ( )) ( ( ( ) ( )) ( ( ) ( )) ) ( )†D t t t t t t,
1

2
Tr . 11a b a b a b

If there exists a pair of initial states ρa(0) and ρb(0) such that the time derivative of the trace distance between ρa(t)
and ρb(t) at a certain t becomes positive, the noise process is called non-Markovian [1, 32, 33]. From these
perspectives, we interpret the γ dependence of ∣ ( )∣w t shown infigure 2(b), as follows.

We define ρI(t) as the densitymatrix at twhen SystemII is traced out. In the above case, we find

s s r+ =(( ) ( )) ( )t w tTr i .x y I

The initial state at t=0 givesw(0)=1, while the state at = ¥t gives ¥ =( )w 0 since r s¥ =( ) 2I 0 .We
assign ρI(t) obtained the above to ρa(t) in equation (11) and doσ0/2 to ρb(t). Note that the densitymatrixσ0/2
corresponds to = =   ( ) ( ) ( )w w z z, , 0, 0 and thusσ0/2 does not evolve in time according to equation (8).We
find

r s =( ( ) ) ∣ ( )∣D t w t, 2
1

2
,I 0

4

New J. Phys. 21 (2019) 093008 L BHo et al



or the FID signal directly shows the trace distance between ρI(t) andσ0/2.When γ/J is large, the relaxation is

exponential, or
r s( ( ) )D t

t

d log , 2

d
I 0 is negative constant. Thismeans that the time-homogeneous relaxation is

observed.On the other hand, when γ/J is small,
r s( ( ) )D t
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d , 2

d
I 0 can be positive at a certain t. This implies that the

relaxation is non-Markovian.When γ/J is intermediate,
r s( ( ) )D t

t

d log , 2

d
I 0 is always negative, but time-dependent.

This implies that the time-inhomogeneous noisy environment is realized [1, 2, 34].

2.3. Non-Markovian environmentwith n qubits in SystemII
Let us consider the case when SystemII consists of n qubits.We call it a (1+n) system.We assume the
following.

• There is no interaction among the qubits in SystemII.

• The individual interactions between the qubit in SystemI and the qubits in SystemII are the same as that in
the (1+1) system.

• TheMarkovian environments equally influence on the qubits in SystemII.

• The qubits in SystemII are distinguishable.

Themaster equation is given as,
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On the other hand, the densitymatrix is 2n+1×2n+1matrix and is given as,
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,  ¼  ñ∣ , , ,  ¼  ñ∣ , , , to  ¼  ñ∣ , , , . As in the (1+1) system, zk is constant
because ofσz⊗σz type interactions. Therefore, the dynamics of ρn is reduced to the simultaneous differential
equations,
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, n has 2n complex components andMn is a 2

n×2nmatrix. By taking into account the
structure of equation (12) andM1=M,Mn is given as,

Figure 2. (a)w(t)ʼs are plottedwith γ/J=0.41 (green), 0.74 (red), 1.04 (blue), 2.21 (orange), and 4.42 (black). (b) ∣ ( )∣w t ʼs are plotted
in single logarithmic form.
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2.4. Permutation symmetric non-Markovian environment
We relax the forth condition ‘The qubits in SystemII are distinguishable.’ In section 2.3 and consider the case
when SystemII is symmetric with respect to permutation operations. In other words, what we have to consider
is the dynamics in the symmetric subspace in the 2n dimensional space spanned by the basis   ñ∣{ }, n .

This permutation symmetric subspace is spanned by the following 1+n vectors.
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Then,Mn is projected on this subspace as follows.
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where ( )Sk
m (k=x, y, z) is the spin-mmatrix and I( d) is the identitymatrix of dimension d. Transformation in

equation (19) is based on the definition of ( )Sk
m . Note that ( )Mn

s is a (1+n)×(1+n)matrix and ismuch
smaller thanMn.

It is interesting to note thatMn and
( )Mn
s give the same dynamics of SystemI.

3. Experimental realization of non-Markovian environment

By usingNMR,we demonstrate our idea to engineer the environment where SystemI interacts with a
Markovian environment through SystemII in order to induce the time-inhomogeneous or non-Markovian
dephasing. Solutemolecules in isotropic liquids are under influence of solventmolecules. However, we have to
take into account that thesemolecules are (1) under an external strongmagnetic field, and (2) rapidlymoving
and rotating. Therefore, the interactions between nuclear spins in the solutemolecules and solventmolecules of
which time scales aremuch shorter than 1/ω (ω is a Larmor frequency of the nuclear spin) are averaged out and
are effectively nullified: this is themotional narrowing effect [36].Moreover, if the solventmolecules do not have
dipolemoments, then the solutemolecules’nuclear spins can be approximately thought as in vacuum in the
sense that the solvent, or the environment, does not have an influence on the nuclear spins in them [36]. Note
also that the interactions among hetero-nuclear spins in amolecule solved in isotropic liquid arewell described
withσz⊗σz type ones [36] that are assumed in section 2.

Now,we add a small and controlled amount of ions that havemagnetic dipolemoments, such as Fe(III), into
solution.We call these ionsmagnetic impurities. Thesemagnetic impurities aremoving rapidly and randomly
because of the thermalmotion, and thus they randomly flip-flop the solutemolecules’nuclear spins. So the
magnetic impurities play the role of the environment that generates randomflip-flopmotions of the nuclear
spins in solutemolecules. The rate of theseflip-flopping, γ, is proportional to the concentration of themagnetic
impurities [21]. Note that the concentration of themagnetic impurities are controlled so that themagnetic
impurities do not show amotional narrowing effect, seefigure 2.Moreover, thesemagnetic impurities are
rapidly running in the solution and thus this ‘environment’has very shortmemory. Or, themagnetic impurities
act as almost idealMarkovian environment. Although addingmagnetic impurities for controlling longitudinal
relaxations is a popular technique inNMR [36], the originality of our approach is that we usemagnetic
impurities to engineer the environment for realizing time-inhomogeneous and non-Markovian environment.

3.1. Samples
As the solutemolecule for the present study, we employed (a) 13C enriched chloroform (CHCl3), (b)

13C
enrichedmethanol (CH3OH), and (c)normal Tetramethylsilane (TMS, C4H12Si) in acetone d-6.Note that the
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spins inCl atoms in chloroform ismagnetically inert, while that inO atom and those inC atoms in TMS are
spinless. In thesemolecules, the 13C or 29Si spins (open circles infigure 3) correspond to SystemI, while the 1H
spins (filled circles) correspond to SystemII. About 5%of Si atoms in TMS is 29Si and has a spin 1/2. The qubit
number nʼs of system II are 1 (a), 3 (b), and 12 (c), while the interaction strengths Jʼs are 2π 215 rad s−1 (a), 2π
140 rad s−1 (b), and 2π 6.6 rad s−1 (c) [21]. These Jʼs weremeasured from the separations of the peaks in the
spectra (figure 3) obtained by Fourier transforming Free InductionDecay (FID) signals. SystemI and II are
surrounded by theMarkovian environment generated by Fe(III)magnetic impurities (gray circles), see
figure 3(d).When the 1Hspins are decoupled, these spectra showonly single peaks and indicate that the 1Hspins
were effectively nullified. See section 3.2, too.Note thatwhen the 1Hspins are decoupled, the Larmor
frequencies of the 13C and 29Sispins in TMS are employed as the frequency standards [37]. Therefore, TMS is
one of themost popular compounds inNMR.

Aswementioned above, thesemolecules are rotating in solutions and the spins consisting of SystemII are
changing their positions. Therefore, the permutation symmetric non-Markovian environmentmodel discussed
in section 2.4must be employed for analyzing experimental data.Moreover, theMarkovian environment
directly influences SystemI although it is smaller than that on SystemII because of the strong distance
dependence of the dipole–dipole interaction: SystemI is farther from themagnetic impurities than SystemII, as
schematically shown infigure 3(d).Wemay estimate the shortest distance between SystemI (II) and the
magnetic impurity, as follows. Themagneticmoment of the ion is caused by unpaired electron on the electrical
orbit and thus it is reasonable to assume that themagneticmoment is on the surface of the ion. Therefore, the
distance between SystemI and themagneticmoment is of the order of the sumof a Si atom radius (110 pm) and
a 1Hatomone (50 pm) and is of the order of 150pm.On the other hand, this distance between SystemII and
themagneticmoment is of the order of the 1Hatom radius (50 pm).

From equation (4), the direct influence on SystemI from themagnetic impurities can be taken into account
by introducing the following ¢Mn.

g
s¢ = - +Ä ( )M M

2
, 20n

n
n

0
0

where γ0 is the flip-flopping rate of SystemI directly caused by theMarkovian environment. See appendix for
more details.

Figure 3. (a)–(c) Sketches and their topology of threemolecules employed in this paper. Open (filled) circles correspond to SystemI
(II) in figure 1. The spectra of these samples withoutmagnetic impurities are also shown. The black solid lines arewithout decoupling
and give Jʼs, while the red dotted lines are with decoupling 1Hspins. The y-axes are arbitrary. Note that not all peaks in the TMS
spectrum are visible because of small signal to noise ratio. (a)CHCl3 (

13C enriched chloroform, n = 1, J=2π 215 rad s−1), (b)
CH3OH (13C enrichedmethanol, n = 3, J = 2π 140 rad s−1), (c)C4H12Si (normal Tetramethylsilane, n = 12, J=2π 6.6 rad s−1). (d)
SystemI and II are in theMarkovian environment generated by Fe(III)magnetic impurities (gray circles). SystemII can be effectively
removed by decoupling technique.
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3.2. Switching off non-Markovianity
The origin of the non-Markovian behavior of SystemI is SystemII. Therefore, if wewere able to remove
SystemII, itmight be possible to switch off the non-Markovianity of the environment [31]. Of course, we
cannot physically separate the 1Hatoms from themolecules shown in figure 3.However, the influence from the
1Hspins can be nullified by using a standardNMR technique called decoupling [36, 37].

We employed theWALTZ-16 pulse sequence [37] for decoupling. See, figure 4. TheWALTZ-16 pulse
sequence consists ofmultiple series of+π/2,−π, and+ 3π/2-pulses without time intervals between them
unlike usual decoupling pulses in quantum information processing [3–5].We also note that usualNMR
measurements are ensemble ones and that the systemdynamics during the decoupling can bemeasured
continuously. The strength of these pulses in our experiments were p= ´ -H 2 2.7 10 rad srf

3 1 in frequency
unit or the 1Hspins rotated atHrf under these pulses. Since the interaction strengths of our samples are atmost
2π 215 rad s−1 in frequency unit, they aremuch less thanHrf. Therefore, the

1Hspins are effectively nullified in
average. These nullification can be confirmed from the fact that the spectra contains only single peaks, as shown
infigure 3, when the 1Hspins are decoupledwith theWALTZ-16. Remember that wemeasured Jʼs from the
peak separations.When the 1Hspins are nullified, γ0 can be directlymeasured.We also note that there is no
principle limitation inHrf strength and one can increase it if necessary.

3.3. (1+1) system
The left panels in figure 5 shows themeasured Free InductionDecay signals (hereafter FID’s) of 13C in 13C
enrichedCHCl3 in acetone-d6whenHspins were decoupled. The red (black) points are the real (imaginary)
part of FID’s. The dashed lines are exponential fittings to the real parts of FID’s andwe obtained γ0/2ʼs as their
time constants.We also independentlymeasuredT1ʼs ofHspins with the standardNMR technique called the
inverse-recoverymethod [36, 37]. TheseT1ʼs are assigned to γʼs in theoretical calculations with a (1+1)
system. These are summarized in table 1.

The right panels infigure 5 shows FID’s of 13CwhenHspins were not decoupled, or with non-
Markovianity. The green (blue) lines are theoretically calculated real (imaginary) parts of FID’s with a (1+1)
system. There is an excellent agreement between themeasured and calculated FID’s. Note that there is nofitting
parameters except for the signal amplitude normalization.

Figure 4. Schematic of switching on/off non-Markovianity. (a) Switching off: the FID signal ismeasured underWALTZ-16
(decoupling) applied for SystemII (here, 1H spins). (b) Switching on: the FID signal ismeasuredwithout decoupling SystemII. The
black boxes indicateπ/2-pulses that turn themagnetization of SystemI from the z-axis to the x-axis and initiate FID signals.

Table 1.Chloroformparameters.Cmʼs are the concentrations of Fe(III) impurity in
milliMol unit (mM). γ0ʼs weremeasured fromFID signals when 1Hspins were
decoupled, as shown in the left panels in figure 5.T1ʼs of

1Hspins were independently
measuredwith the standardNMR technique (the inverse-recoverymethod). J=2π
215 rad s−1.

Cm 1/(γ0/2) T1 ofH

4mM 0.17s 0.21s
48mM 0.10s 6.5ms
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3.4. (1+3) system
Figure 6 shows themeasured FID’s of the CH3OH samples and calculated oneswith a (1+3) system like
figure 5. The parameters for calculations are summarized in table 2. The slight increase of 1/(γ0/2) from
Cm=49 to 79mMmight be caused by themotional narrowing effect. However, it is not straightforward to
understand this quantitatively, which is kept as future research. Excellent agreement between themeasured and
calculated FID’s are seen infigure 6, too.Note also that a close look (the inset ofCm=12mM) reveals that FID’s
without decoupling are not simple damping oscillations. This is an evidence that the environment has a long
memory aswewill discuss in section 3.5 inmore detail.We also observe that the envelope in the non-decoupled
case ofCm=79mMdecays faster than that ofCm=49mM in spite of the longer 1/(γ0/2) ofCm=79mM
than that ofCm=49mM.The faster decay of the envelope is caused by the shorterT2 ofH, or larger γ in
equation (12). This observation enforces our idea: the role of SystemII in the phase relaxation of System I is
important.

3.5. (1+12) system
The excellent agreement betweenmeasured and calculated FID’s shown infigures 5 and 6 illustrates the
usefulness of ourmodel to understand an open systemwith the environment that has a longmemory.When n
increases in a (1+n) system, this longmemory ismore evident: wewill discuss it with a (1+12) system in
terms of an information (in our case, the transversalmagnetization)flow [22].

Figure 7 shows FID’s of 29Si in TMS solved in acetone-d6 and those calculatedwith a (1+12) system. The
parameters are summarized in table 3.We again observed that γ0 are notmonotonous function ofCm.We,
however, point out that the calculated FID signals with thesemeasured γ0ʼs reproduced ourmeasured FID ones

Figure 5. FID signals of CHCl3 (Chloroform). The real (imaginary) parts of FID signals are shown in red (black) points. The left panels
showFID’s when 1Hspins are decoupled, while FID’s without decoupling are shown in the right panels. The dashed lines in the left
panels are exponential fittings to FID’s that provide γ0ʼs. The green (blue) curves are calculated real (imaginary) parts of FID signals.
The blue curves are hidden by the other data and hardly visible.

Table 2.Methanol parameters. Themeasurementmethods are the same as in table 1.
J=2π 140 rad s−1.

Cm 1/(γ0/2) T1 ofH

12mM 0.39s 0.16s
21mM 0.37s 93ms

49mM 0.10s 34ms

79mM 0.13s 20ms
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well, as shown infigure 7. Themeasured FID signals in the cases ofCm=0 and 11mMappear noisier than
those ofCm=19 and 40mM: this difference is caused by the differences of the number ofmeasurements
accumulated in order to improve the signal to noise ratio.

Theremight be small oscillations in the FID signals of Cm=0.0 and 11mMwith non-Markovianity.We,
however, think that these arewithin our experimental errors and thus these are not significant.

Figure 6. FID signals of CH3OH (Methanol). The symbols are the same as infigure 5. The inset shows a close look between 0 and
50ms.

Table 3.TMSparameters. Themeasurementmethods are the same as in table 1.
J=2π 6.6 rad s−1.

Cm 1/(γ0/2) T1 ofH

0mM 4.9s 10s
11mM 0.79s 0.30s
19mM 1.0s 0.14s
40mM 0.83s 70ms
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The FID signals (0 mMFe(III))with (left panel) andwithout (right panel) decoupling 1Hspins clearly show
our ability of switching on and off non-Markovian environment. The time derivative of the trace distance

r s( ( ) )D t

t

d , 2

d
I 0 becomes positive at a certain time t, and so this is the non-Markovian relaxation. In terms of the

information flow,we can interpret this behavior as follows. The information flows fromSystemI to SystemII
and SystemI perfectly loses it at t=0.08 s. The reverse flow, however, occurs and SystemI regains it at
t=0.16 s. This losing and regaining the information repeatedmany times. In other words, when SystemI loses
the information, SystemII keeps it: this is the clear evidence that our engineered environment has a long
memory.

On the other hand, the FID signals (40 mMFe(III)) clearly showour ability of switching on and off time-

inhomogeneous environment: The decay shown in the inset is non-exponential and
r s( ( ( ) ))D t

t

d log , 2

d
I 0 is always

non-positive but its value is time-dependent. It originates from the time inhomogeneous noise. In terms of the
information flow,we can interpret this behavior as follows. The information continuously flows fromSystemI
to (System II+ theMarkovian environment) and never reverses. Therefore, wemay call it aMarkovian process.
Itsflow rate, however, is time-dependent: this is the time-inhomogeneous relaxation.

Figure 7. FID signals of 29Si inC4H12Si (Tetramethylsilane, TMS) solved in acetone-d6. The symbols are the same as infigure 5.
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The non-Markovian environment gradually changes toMarkovian environment (but is time-
inhomogeneous) in increasing themagnetic impurity concentration, as seen from the FID’s of the samplewith
11 and 19mMFe(III).

From the view point of the information flow, a (1+n) systemmust show aMarkovian relaxationwithout
theMarkovian environment outside of SystemII if  ¥n , or SystemII has infinite capacity of storing
information [22].

4. Conclusion

In conclusion, we proposed a simple and practicalmodel that shows time-(in)homogeneousMarkovian and
non-Markovian relaxations as a function of controllable parameters.Moreover, we experimentally demonstrate
our ideawith star topologymolecules in isotropic liquids. Themodel consists of three parts: SystemI to be
observed, SystemII surrounding SystemI and providing thememory of the interaction between SystemI and
II, andMarkovian environment. The dynamics of this system is analyzedwith the Lindbladmaster equation that
can be solved analytically. There is an excellent agreement between theoretical calculations and experimental
results. Ourmodel is useful to understand an open system, and this is essential for the realization of various
quantummechanics based technology, such as quantum computation and quantummeteorology.
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Appendix

Wediscuss a (1+2) system that includes the direct influence on SystemI fromMarkovian environment in
order to illustrate our idea of the permutation symmetric non-Markovian environment. Themaster equation is
given as,
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where γ0 is the flip-flopping rate of SystemI directly caused by theMarkovian environment and
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2 On the other hand, the densitymatrix is 23×23matrix and is given as,
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Next, substituting ρ2 into the rhs of equation (21) gives
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Note that thematrix in the rhs is equal to ¢M2 introduced in equation (20). Therefore, we obtain
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Let us consider the case when the two qubits in SystemII are symmetric, i.e.  ñ∣ and  ñ∣ are
indistinguishable.We introduce theDicke basis as

ñ =  ñ = ñ =
 ñ +  ñ

= - ñ =  ñ =

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∣ ∣ ∣ ∣ ∣ ∣ ∣1, 1

1
0
0
0

, 1, 0
2

0

0

, 1, 1

0
0
0
1

,

1

2

1

2

and thusK2 is given as

º ñ ñ - ñ =

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
(∣ ∣ ∣ )K 1, 1 , 1, 0 , 1, 1

1 0 0

0 0

0 0

0 0 1

.2

1

2

1

2

Symmetrized ( )W s
2 is obtained as follows.
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Therefore, the dynamics of ρ2 can also be obtained by solving
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