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Background: Collective motions in quantum many-body systems are described as bosonic excitations. Multi-
phonon excitations in atomic nuclei, however, were observed very rarely. In particular, the first two-phonon γ

vibrational (2γ ) excitation in odd-A nuclei was reported in 2006 and only a few have been known so far. Two
theoretical calculations for the data on 103Nb were performed, one of which was done by the present author
within a limited model space up to 2γ basis states. Quite recently, conspicuously enhanced B(E2)s, reduced E2
transition probabilities, feeding 2γ states were observed in 105Nb and conjectured that their parent states, called
band (4), are candidates of 3γ states.
Purpose: In the present work, the model space is enlarged up to 4γ basis states. The purpose is twofold: One is
to see how the description of 2γ eigenstates in the previous work is improved, and the other is to examine the
existence of collective 3γ eigenstates, and when they exist, study their collectivity through calculating interband
B(E2)s.
Method: The particle-vibration coupling model based on the cranking model and the random-phase
approximation is used to calculate the vibrational states in rotating odd-A nuclei. Interband B(E2)s are calculated
by adopting the method of the generalized intensity relation.
Results: The present model reproduces well the energy spectra and B(E2)s of 0γ -2γ states in 103Nb and 105Nb.
For 3γ states, calculated spectra indicate that the most collective state with the highest K at zero rotation feels
strong Coriolis force after rotation sets in and consequently is observed with lowered K , where K is the projection
of the angular momentum to the z axis. The calculated states account for the observed enhanced B(E2)s within
factors of 2–3.
Conclusions: The present calculation with the enlarged model space reproduces the observed 0γ -2γ states well
and predicts properties of collective 3γ states. The most collective one is thought to be the main component of
the observed band (4) from the analyses of the energy spectra and interband B(E2)s although some mixing with
states that are not included in the present model would be possible.
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I. INTRODUCTION

Collective motions in quantum many-body systems are
formed as coherent superpositions of many individual degrees
of freedom, and are described as bosonic excitations. In
atomic nuclei, one of the finite many-body systems, the
representative is vibrations of the surface of the average po-
tential produced self-consistently to the nucleon distribution.
However, repeated excitations, the characteristic of bosons,
are not always observed. Even when observed, their strengths
spread over many eigenstates because collective and individual
noncollective excitations have similar energy scale. Therefore,
existence and properties of multiple excitations have been a
longstanding subject of theoretical and experimental studies.

Famous examples are known in high-lying giant reso-
nances. Double excitations of the one with the same multipole
and of different types have been observed; see, for example,
a review [1]. Among low-lying vibrations, the multi-phonon
quadrupole vibrational states in spherical nuclei have long
been studied around 110Cd [2,3]. In axially symmetric or
weakly triaxial deformed nuclei, the two-phonon γ vibration,
denoted as 2γ hereafter, was studied for three decades as
concisely reviewed in Ref. [4], but observed only in 168Er,
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166Er, 164Dy, 232Th, 106Mo, and 104Mo in even-even nuclei.
Recently, another candidate was reported in the weakly
deformed, γ -soft nucleus, 138Nd [5].

In odd-A nuclei, vibrations of the average potential alter
the particle motion and the change thus caused affects back
the average potential. Consequently the particle motion and the
vibration couple to each other to various degrees. This coupling
makes the excitation spectrum complex in general. From
another point of view, however, a stretched parallel coupling
of the high-j particle and K = 2 phonons can produce high-K
states that can hardly mix with other states with lower K . Here
j is the single-particle angular momentum, and K = 2 the
projection to the z axis of the angular momentum carried by
the γ vibration. Accordingly there can be more opportunities
to observe multi-phonon γ -vibrational states.

Prior to experimental observations, numerical predictions
for odd-A nuclei were made in Ref. [6]. The first observation
was made 10 years later in 105Mo [7]. Soon after this, similar
bands were observed in 103Nb [8] and in 107Tc [9]. The
first realistic theoretical calculation in terms of the triaxial
projected shell model was reported for 103Nb [10] in 2010. The
calculation in terms of the particle-vibration coupling (PVC)
model based on the cranking model and the random-phase
approximation (RPA) was done in 2011 [4].

As another type of multi-phonon state in strongly triaxial
deformed nuclei, two-phonon wobbling bands were observed
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in 163Lu [11] and 165Lu [12] and analyzed in Ref. [13].
Furthermore, the rotational bands built on the high-K multi-
quasiparticle states can be interpreted theoretically as a multi-
phonon excitation of the precession mode, which is the axially
symmetric limit of the wobbling mode [14].

Quite recently, a 2γ band in 105Nb bearing much resem-
blance to that in 103Nb was reported [15]. The characteristic
feature common to these two isotopes but beyond the scope
of Ref. [4] is that the observed band (4) is interpreted as a
candidate of the 3γ band. In particular in 105Nb, B(E2)s from
this band to the 2γ band are conspicuously enhanced compared
with the Weisskopf unit.

In Ref. [4], the model, which was developed to study the sig-
nature dependence in 0γ bands in the rare-earth region [16,17]
and utilized later to study the two sequences with K = � ± 2
of the 1γ band in 165Ho and the one with K = � + 2 in
167Er [18], was applied to the 2γ band for the first time. Here
� is the projection of the single-particle angular momentum
to the z axis. From a microscopic many-body theoretical point
of view, the mechanism that leads to anharmonicity of the
spectrum beyond the RPA was discussed in the studies of 2γ
bands in even-even nuclei [19], however, the present model
concentrates on that peculiar to odd-A systems. The result was
that the 0γ and 1γ bands were reproduced perfectly but the
calculated 2γ band was somewhat higher in energy than the
observed one as in the other calculation [10].

In the present paper, the model space is enlarged up to
4γ basis states and the interband B(E2)s are also calculated
utilizing the method of the generalized intensity relation
(GIR) [2,20]. The purpose is twofold: One is to see how the
description of 2γ states in Ref. [4] is improved, and the other
is to look into the existence of 3γ states, and when they exist,
study their collectivity through calculating vibrational B(E2)s.
This is the first attempt to study realistic 3γ states in deformed
nuclei, to the author’s knowledge.

Throughout this paper the � = 1 unit is used.

II. THE MODEL

A. Particle-vibration coupling

Eigenstates of the odd-A nucleus in a rotating frame are
calculated in the particle-vibration coupling model based on
the cranking model and the RPA. The adopted Hamiltonian
is the same as in Ref. [4], therefore recapitulated only briefly
here. The detailed definitions of the adopted notations were
given there [4]. I begin with the cranked Nilsson plus BCS

one-body Hamiltonian,

h′ = h − ωrotJx, (1)

h = hNil − �τ (P †
τ + Pτ ) − λτNτ , (2)

hNil = p2

2M
+ 1

2
M

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
) + vls l · s

+ vll(l2 − 〈l2〉Nosc ). (3)

This Hamiltonian gives quasiparticle states created by a†
μ and

a
†
μ̄ with signature r = exp (−iπα) = −i and +i, respectively.

Then I apply the RPA to the residual pairing plus doubly
stretched quadrupole-quadrupole interaction between quasi-
particles. The interaction Hamiltonian is given by

Hint = −
∑

τ=1,2

Gτ P̃
†
τ P̃τ − 1

2

∑

K=0,1,2

κ
(+)
K Q

′′(+)†
K Q

′′(+)
K

− 1

2

∑

K=1,2

κ
(−)
K Q

′′(−)†
K Q

′′(−)
K , (4)

where Q
′′(±)
K are the signature-coupled form of the quadrupole

operators defined by the doubly stretched coordinates.
Among the RPA modes, X

†
n, determined by Hint, I choose

the γ -vibrational phonons, n = γ (±) with signature r = ±1,
which have outstandingly large K = 2 transition amplitudes.
In terms of the quasiparticles and the γ -vibrational phonons
thus determined, the particle-vibration coupling Hamiltonian
takes the form,

Hcouple(γ ) =
∑

μν

�γ (+)(μν)(X†
γ (+)a

†
μaν + Xγ (+)a

†
νaμ)

+
∑

μν̄

�γ (−)(μν̄)(X†
γ (−)a

†
μaν̄ + Xγ (−)a

†
ν̄aμ)

+ sig. conj. (5)

The coupling vertices are given by

�γ (+)(μν) = −
∑

K=0,1,2

κ
(+)
K T

′′(+)
K Q

′′(+)
K (μν),

�γ (−)(μν̄) = −
∑

K=1,2

κ
(−)
K T

′′(−)
K Q

′′(−)
K (μν̄), (6)

and sig. conj.,

where T
′′(±)
K are the doubly stretched quadrupole transition

amplitudes associated with the γ -vibrational phonons and
Q

′′(±)
K (αβ) denote quasiparticle scattering matrix elements.
Eigenstates of the total Hamiltonian at each ωrot take the

form,

|χi〉 =
∑

μ

ψ
(1)
i (μ)a†

μ|φ〉 +
∑

μ

ψ
(3)
i (μγ )a†

μX†
γ |φ〉 +

∑

μ̄

ψ
(3)
i (μ̄γ̄ )a†

μ̄X
†
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∑

μ

ψ
(5)
i (μγγ )

1√
2
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μ(X†

γ )2|φ 〉

+
∑
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ψ
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i (μγ̄ γ̄ )

1√
2

a†
μ(X†

γ̄ )2|φ 〉 +
∑

μ̄

ψ
(5)
i (μ̄γ γ̄ ) a

†
μ̄X†

γ X
†
γ̄ |φ 〉 +

∑

μ

ψ
(7)
i (μγγ γ )

1√
3!

a†
μ(X†

γ )3|φ 〉

+
∑

μ̄

ψ
(7)
i (μ̄γ̄ γ̄ γ̄ )

1√
3!

a
†
μ̄(X†

γ̄ )3|φ 〉 +
∑

μ̄

ψ
(7)
i (μ̄γ γ γ̄ )

1√
2
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γ )2X
†
γ̄ |φ 〉 +
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μ

ψ
(7)
i (μγ γ̄ γ̄ )
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+
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(9)
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1√
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for the r = −i sector, (7)

where γ and γ̄ abbreviate γ (+) and γ (−), respectively, and
|φ〉 is the rotating vacuum configuration. Those for the r = +i
sector take a similar form. This notation indicates that a limited
class of 1, 3, 5, 7, and 9qp states that contribute to multi-phonon
γ -vibrational states are taken into account. Among these, the
model space was truncated up to the ψ (5) terms in Ref. [4].
Here it should be noted that the tilt of the rotational axis
brought about by large triaxial deformations can mix signature
quantum number in general. But the rotation is essentially
one-dimensional when the static triaxial deformation is smaller
than the zero-point amplitude of the γ vibration.

B. Generalized intensity relation

The rotational effects on the vibrational (interband) tran-
sition rates are well described by the generalized intensity
relation in terms of the intrinsic matrix elements (see Fig. 4-30
in Ref. [2]). On the other hand, the cranking model and its
extensions can provide us with rotationally perturbed intrinsic
matrix elements precisely. Therefore, a method to combine
these two was proposed in Ref. [20] and applied to the
1γ → 0γ transitions in 165Ho and 167Er in Ref. [18]. In the
present study, this method is applied to the nγ → (n − 1)γ
transitions with n =1, 2, and 3, along the way of this reference.
The expressions for the B(E2) are

B(E2 : IiKi → IfKf) = 〈IiKi2�K|IfKf〉2Q2
out, (8)

Qout = Q1 + Q2[If(If + 1) − Ii(Ii + 1)],

(9)

Q1 =
√

2Qtr − �K(Ki + Kf)Q2, (10)

Qtr = 〈f|Q(+)
2 |i〉, (11)

Q2 = 1√
2J

d〈f|Q(+)
1 |i〉

dωrot
, (12)

where Qtr and Q2 are evaluated at ωrot = 0, and the moment
of inertia J is extracted from the experimental energy of the
first �I = 2 excited states in the ground band.

III. RESULTS AND DISCUSSION

Numerical calculations are performed for two isotopes,
103Nb and 105Nb, in which candidates of 3γ states were
observed [8,15]. The former was investigated in Ref. [4] within
a limited model space, and the latter, on which the data were
reported quite recently, is newly studied. In both isotopes, the
ground band is based on the π [422] 5/2+ asymptotic state,
and the single- and multi-phonon γ -vibrational excitations on
top of it were observed. Cranking and RPA calculations are
done in the five major shells, Nosc = 2–6 for the neutron and

1–5 for the proton. The indices μ and μ̄ in Eq. (7) for the PVC
eigenstates run from 1 to 15, the number of quasiparticle states
with Nosc = 4. In the following, the results for the favored
signature, r = −i, are mainly presented while those for the
unfavored r = +i are also shown when necessary.

A. 0γ -2γ states in 103Nb

All the parameters entering into the calculation are the same
as those adopted in Ref. [4]. The pairing gaps �n = 1.05 MeV,
�p = 0.85 MeV, and the deformation ε2 = 0.31 are adopted
conforming to the experimental analyses [8,21]. The triaxiality
γ = −7◦ is chosen to reproduce the measured signature
splitting of the ground band in the PVC calculation. The
quadrupole force strengths are determined to reproduce in the
axially symmetric limit the γ -vibrational energy observed in
104Mo [22] (see Ref. [4] for the detail).

1. Distribution of collective states

In Fig. 1, the distribution of collective states are shown.
In the following, I denote the favored signature of the lowest
quasiparticle state as 1qp, and its signature partner as 1qp.
The lowest PVC eigenstate whose main component is this
1qp is often denoted also as the 0γ state. Then the fraction
of the 1γ components (green dashed in the figure) means the
sum of the probabilities of 1qp ⊗ γ (+) and 1qp ⊗ γ (−) basis
states. The conventions for multi-phonon states are understood
straightforwardly.

At ωrot = 0, 0γ –3γ states are almost harmonic, whereas
the 4γ strength is located higher than the harmonic location.
In addition, the main peaks of 0γ –4γ states are almost the
same height although the collective strength spreads as the
number of phonon increases. As discussed later, the main
peaks have fairly pure K .

As soon as rotation sets in, the heights of the main
peaks decrease approximately in proportion to the number
of phonons. Two sequences of 1γ and three sequences of
2γ states survive up to high spins as discussed in Ref. [4].
In addition, three or four sequences of 3γ states keep their
collective character to some extent. Routhians of nγ states
are e′

2γ < e′
0γ + 2�p, but e′

0γ + 2�p < e′
3γ < e′

0γ + 2�n.
Therefore, the collectivity of the calculated 3γ states other
than high-K ones, which are hard to mix with other states,
should be considered with reservations, because in the present
model 1qp ⊗ 3γ basis states couple only with (1qp)′ ⊗ 2γ
and (1qp)′ ⊗ 4γ , whereas direct couplings to 3qp states are
not included, where (1qp)′ denotes other one-quasiparticle
basis states including those of the opposite signature.

In Fig. 2, calculated eigenstates in the regions of (a) 1γ and
(b) 2γ states are shown. Among them, those with more than

044313-3



MASAYUKI MATSUZAKI PHYSICAL REVIEW C 90, 044313 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

fr
ac

tio
n

e’ (MeV)

0.00

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

fr
ac

tio
n

e’ (MeV)

0.10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

fr
ac

tio
n

e’ (MeV)

0.20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

fr
ac

tio
n

e’ (MeV)

0.30

FIG. 1. (Color online) Distribution of the collective fraction (probability in the wave function) of the 0γ , 1γ , 2γ , 3γ , and 4γ

components in the favored signature (r = −i) sector of 103Nb, |ψ (1)(1)|2 (blue longer dotted), |ψ (3)(1γ )|2 + |ψ (3)(1̄γ̄ )|2 (green dashed),
|ψ (5)(1γ γ )|2 + |ψ (5)(1γ̄ γ̄ )|2 + |ψ (5)(1̄γ γ̄ )|2 (red solid), |ψ (7)(1γ γ γ )|2 + |ψ (7)(1̄γ̄ γ̄ γ̄ )|2 + |ψ (7)(1̄γ γ γ̄ )|2 + |ψ (7)(1γ γ̄ γ̄ )|2 (magenta dotted),
and |ψ (9)(1γ γ γ γ )|2 + |ψ (9)(1γ̄ γ̄ γ̄ γ̄ )|2 + |ψ (9)(1̄γ γ γ γ̄ )|2 + |ψ (9)(1̄γ γ̄ γ̄ γ̄ )|2 + |ψ (9)(1γ γ γ̄ γ̄ )|2 (blue dot-dashed), respectively, at ωrot =
0–0.3 MeV.

50% collective (1γ or 2γ ) fraction are emphasized with red
crosses. The two 1γ sequences are completely isolated from
other states. The three 2γ ones are also distinguished from
other states but crossed by two up-slope noncollective states
at around ωrot = 0.15–0.2 MeV.

2. Characterization of the calculated 1γ and 2γ states

On the correspondence between 1γ bands in the calculation
in the signature scheme and that in the K scheme, it was argued
in Ref. [4] that the obtained lower band can be identified with
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FIG. 2. (Color online) Routhians of all calculated PVC states in
the r = −i sector of 103Nb in the regions of (a) 1γ and (b) 2γ bands
are shown by green +s. Those with more than 50% collective fraction
are emphasized by red ×s. The labels attached designate the numbers,
i in Eq. (7), enumerated from the lowest.

the K = � − 2 band because states with lower K have lower
intrinsic energies than those with higher K and the same total
angular momentum I . To look into this correspondence more,
the aligned angular momenta around ωrot = 0 are shown in
Figs. 3(a) for 1γ and 3(b) for 2γ states. The labels i of states
refer to those in Fig. 2.

The 1γ band should have K = |� − 2| = 1/2 or � + 2 =
9/2 at the band head aside from weak K mixing stemming
from static triaxial deformation. Figure 3(a) clearly shows
that the lower (second) pair of states has a strong signature
decoupling, nonzero aligned angular momentum with opposite
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FIG. 3. (Color online) Expectation values of the projection of the
angular momentum to the rotational (x) axis around the band heads
of (a) 1γ and (b) 2γ bands in 103Nb.
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FIG. 4. (Color online) Amplitudes of the dominant components
D(+) = |ψ (3)

i (1γ )| and D(−) = |ψ (3)
i (1̄γ̄ )| in (a) upper (i = 3rd) and

(b) lower (i = 2nd) 1γ bands in the r = −i sector of 103Nb.

sign at ωrot = 0, while the upper (third) pair has practically
zero aligned angular momentum at ωrot = 0 and negligible
signature splitting. This proves the mapping that the lower
band is of low K and the upper band is of high K .

The characterization is further evidenced by looking at
the wave function. Figure 4 graphs the amplitudes of the
dominant components, D(+) = |ψ (3)

i (1γ )| for 1qp ⊗ γ (+)
and D(−) = |ψ (3)

i (1̄γ̄ )| for 1qp ⊗ γ (−), in (a) upper (i = 3rd)
and (b) lower (i = 2nd) bands. The structure of the γ (±) is
(Q22 ± Q2−2)/

√
2. These two components mix with similar

magnitudes both in the upper and lower eigenstates and their
relative sign (not shown) is always opposite. This means that
the two orthogonal combinations of γ (±) reproduce high-K
and low-K states.

The 2γ band should have K = |� − 4| = 3/2 or � =
5/2 or � + 4 = 13/2 at the band head. An argument for
Fig. 3(b) similar to that for 1γ bands in Fig. 3(a) leads to the
identification that the ninth pair is K = 13/2, the eighth and
seventh are K = 3/2 and K = 5/2. The latter two interact
with each other in r = −i as soon as rotation sets in. This
interaction can also be seen in Fig. 2(b). Note that the eighth
state has about 35% collectivity at ωrot = 0 but it increases as
ωrot increases.

This discussion confirms that the calculated upper bands,
third for 1γ and ninth for 2γ , possess the character of the
highest K , K = 9/2 and 13/2, respectively. Because the
observed bands (2) and (3) were assigned experimentally as
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FIG. 5. (Color online) Routhians of calculated 0γ (blue ∗s), 1γ

(green ×s), and 2γ (red +s) states in the r = −i sector of 103Nb
are compared with the corresponding data (curves) converted to the
rotating frame by using the Harris parameters J0 = 15.45 MeV−1

and J1 = 81.23 MeV−3 that fit the yrast band of 104Mo [22]. The
observed transition in band (4), the 3γ candidate, converted to the
rotating frame is also shown by a large ×.

K = 9/2 and 13/2, respectively, the correspondence between
the theory and experiment is established. This is natural in that
the most collective state with less mixings with noncollective
states would be observed.
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FIG. 6. (Color online) (a) Experimental and calculated signature
splitting in the π [422] 5/2+ one-quasiparticle band in 105Nb. Theoret-
ical curve is the result of the particle-vibration coupling calculation.
(b) Excitation energies of γ -vibrational RPA phonons in the rotating
frame with r = ±1.
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FIG. 7. (Color online) The same as Fig. 1 but for 105Nb.

3. Effect of enlargement of the model space and comparison
with experimental data

The first purpose of this paper is to see how the 2γ states
calculated in Ref. [4] within a smaller model space are affected
by the enlargement of the space. The previous calculation was
done in the space up to 2γ basis states. This time I examine that
up to 3γ and 4γ basis states. First, by including 3γ basis states,
the upper 2γ band is pushed down by 0.27 MeV (ωrot = 0)–
0.23 MeV (ωrot = 0.3 MeV). Next, by including 4γ , this band
is pushed down further by 0.06–0.03 MeV. The calculated 0γ
and 1γ states are almost unaffected.

The final result is presented in Fig. 5. In this nucleus,
calculated e′

2γ is still higher, by 0.09–0.18 MeV, than the data.
See the result for 105Nb below.

B. 0γ -2γ states in 105Nb

Parameters entering into the calculation are determined
in a manner similar to the case of 103Nb. Concretely, the
pairing gaps �n = 1.05 MeV and �p = 0.85 MeV, and
the deformation ε2 = 0.3254 are adopted conforming to
the experimental analyses [15,21]. The triaxiality γ = −10◦
is chosen to reproduce the observed signature splitting of
the ground (0γ ) band in the PVC calculation as shown
in Fig. 6(a).

The way to determine the quadrupole force strengths
is slightly different; those determined to reproduce ωγ =
0.7104 MeV of 106Mo [21] in the reference configuration with
ωrot = 0 and γ = 0 result in a large signature splitting in ωγ

when triaxial deformation is introduced in contrast to the case
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FIG. 8. (Color online) The same as Fig. 2(b) but for 105Nb.

of 103Nb. Alternatively, they are adjusted so as to reproduce the
above ωγ at ωrot = 0 and γ = −10◦, then κ

(+)
0 is set equal to

κ
(+)
2 as in the case of 103Nb. The values for the residual pairing

interaction are set to reproduce the adopted pairing gaps. The
obtained ωrot dependence and the signature splitting of ωγ are
shown in Fig. 6(b).

1. Distribution of collective states

In Fig. 7, the distribution of collective states is shown.
Overall the feature is quite similar to the case of 103Nb but the
Routhians of collective solutions are slightly lower reflecting
the input ωγ ; this is consistent with the data (see Fig. 7 in
Ref. [15]). Other differences from the 103Nb case are that
(i) the collectivity of the third strongest 2γ (fifth) state is as
low as 30% at around ωrot = 0 but increases as ωrot increases
as seen in Fig. 8, and (ii) among the 3γ states, the lower one is
the most collective at ωrot = 0.3 MeV. The latter feature will
be discussed below.

2. Comparison with experimental data

The characterization of calculated states is done in the
same manner as in the case of 103Nb. Then the comparison
with the data of 0γ -2γ states are shown in Fig. 9. In the
present case the observed 2γ state is perfectly reproduced in
contrast to the 103Nb case in which some deviation remains.
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FIG. 9. (Color online) The same as Fig. 5 but for 105Nb. The
Harris parameters J0 = 18.08 MeV−1 and J1 = 43.21 MeV−3 that
fit the yrast band of 106Mo [21] were used for the conversion.
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FIG. 10. (Color online) Routians of all calculated PVC states in the regions of 3γ states are shown by green +s as in Figs. 2 and 8. Those
with collective fraction more than 50% and 40%–50% are emphasized by red ×s and blue �s, respectively. (a) r = −i of 103Nb, (b) r = +i

of 103Nb, (c) r = −i of 105Nb, and (d) r = +i of 105Nb. The observed transitions in band (4), the 3γ candidate, converted to the rotating frame
are also shown by large ×s.

C. 3γ states in 103Nb and 105Nb

1. Distribution of collective states

An issue beyond the scope of Ref. [4] is to characterize
the observed band (4) that is conjectured to be a candidate of
the 3γ state, the first three-phonon state in deformed nuclei if
confirmed.

Calculated eigenstates in the region of 3γ states are shown
in Figs. 10(a) 103Nb, favored, 10(b) unfavored, 10(c) 105Nb,
favored, and 10(d) unfavored. Contrasting to the previous
1γ and 2γ cases, collective bands are not always parallel,
and collectivity tends to move to lower energy states as ωrot

increases. To show this tendency clearly, states with 40%–50%
collective fractions are also marked with blue squares in these
figures.

This result can be understood as follows. As discussed
already, the highest-lying collective states are the most
collective and have the highest K because of the parallel
coupling � + 2n for nγ states at around ωrot = 0. Because
of K � jeff , where jeff is the effective single-particle angular
momentum of particle-vibration coupled states, high-K states
have fairly pure high jeff . Consequently they feel strong
Coriolis force when rotation sets in. Then they start to align
their angular momenta to the rotational (x) axis with reducing
K; accordingly they reduce their purity and the peak height
in Figs. 1 and 7 gradually. This is an aspect of rotational
K mixing. Therefore it is expected that the collective 3γ
state with K lower than the highest value � + 6 would be
observed. Actually, the observed band (4) with K = 9/2,
indicated by large crosses in the figures, sits around the location
determined by connecting the most collective states at ωrot = 0
and 0.3 MeV in the case of 105Nb. The situation in 103Nb is to
some extent similar, but (i) the lowest collective state at high
ωrot is not collective enough and (ii) the calculated states are
located higher overall. More sophisticated calculation would
be desired because these observations depend on how band
crossings occur and in the present model interband interactions
occur at the same ωrot rather than the same I .

2. Interband B(E2)

The observed enhanced B(E2)s look to be accounted for
primarily by vibrational collectivity, and the above scenario
that the collectivity of the twentieth state at ωrot = 0 is
observed with a lower K after band crossing(s) can lead to

enhanced transitions to the 2γ . Before studying 3γ → 2γ
transitions, I check the results of the generalized intensity
relation on 2γ → 1γ and 1γ → 0γ . Some calculated values
for 103Nb that can be compared with the observed B(E2)
ratios are shown in Table I. Note here that Qtr = 0.1944 eb
gives the zero-point amplitude γ0 = 14◦, defined by tan γ0 =√

2Qtr
Q0

[2], by combining with Q0 = 〈f|Q(+)
0 |f〉 =1.090 eb. This

is larger than the absolute value of the adopted static triaxial
deformation.

First, the calculated values in Table I give
B(E2:15/2+

2γ →11/2+
1γ )

B(E2:11/2+
1γ →7/2+

0γ )
= 2.46 and

B(E2:15/2+
2γ →11/2+

1γ )

B(E2:13/2+
1γ →9/2+

0γ )
= 3.64,

which are very close to the harmonic vibrational values 2.59
and 3.34 in Ref. [8], while the corresponding experimental
values are 1.53(16) and 3.45(37), respectively. This shows that
our PVC model describes the observed values precisely aside
from the fact that the experimental B(E2 : 11/2+

1γ → 7/2+
0γ )

is slightly enhanced.

Next, the calculated value,
B(E2:11/2+

3γ →15/2+
2γ )

B(E2:11/2+
1γ →7/2+

0γ )
= 7.32, is

smaller than the corresponding experimental value, 13.5(11),
but within a factor of 2. The elementary bosonic property,
â|n〉 = √

n |n − 1〉, is reflected in the intrinsic matrix element
Qtr in Table I, such as 0.3122

0.1944 = 1.61 
 √
3. This is modified

by the angular-momentum dependence brought by Q2, and
leads to Qout in Eq. (9). Finally B(E2) is obtained by
multiplying a Clebsch-Gordan coefficient. This means that
the calculated value contains some of the enhancement from
the angular-momentum effect.

I proceed to 105Nb, in which more conspicuous enhance-
ment of B(E2) is observed. In this case γ0 is 13◦ and

TABLE I. Properties of calculated nγ → (n − 1)γ transitions
with n = 1, 2, and 3, designated by the labels of intrinsic states, in
103Nb. The moment of inertia, J = 32.388 MeV−1, extracted from
the energy of the I = 9/2 state in the ground band through E(I ) =
(I (I + 1) − K2)/2J , was used.

r Intr. Ii Ki If Kf Qtr (eb) Q2 (eb) B(E2) (e2b2)

+i 3 → 1 11/2 9/2 7/2 5/2 0.1944 0.0044 0.02618
−i 3 → 1 13/2 9/2 9/2 5/2 0.1944 0.0043 0.01768
+i 9 → 3 15/2 13/2 11/2 9/2 0.2704 0.0067 0.06436
+i 20 → 9 11/2 9/2 15/2 13/2 0.3122 0.0116 0.19168
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TABLE II. The same as Table I but for 105Nb. The moment of
inertia J = 31.831 MeV−1 was used.

r Intr. Ii Ki If Kf Qtr (eb) Q2 (eb) B(E2) (e2b2)

+i 3 → 1 11/2 9/2 7/2 5/2 0.1928 0.0087 0.02065
−i 3 → 1 13/2 9/2 9/2 5/2 0.1928 0.0085 0.01156
+i 8 → 3 15/2 13/2 11/2 9/2 0.2674 0.0125 0.05047
+i 20 → 8 11/2 9/2 15/2 13/2 0.3122 0.0185 0.22386
−i 20 → 8 13/2 9/2 17/2 13/2 0.3122 0.0185 0.22501

again larger than |γ |. The calculated values in Table II

give
B(E2:15/2+

2γ →11/2+
1γ )

B(E2:11/2+
1γ →7/2+

0γ )
= 2.44 and

B(E2:15/2+
2γ →11/2+

1γ )

B(E2:13/2+
1γ →9/2+

0γ )
= 4.37,

while the corresponding experimental values are 2.01(24) and
1.94(25), respectively. The calculated values are similar to
those of 103Nb but in the experimental ones the magnitude of
the denominator is inverted.

For those from the 3γ candidates, the calculated values

are
B(E2:11/2+

3γ →15/2+
2γ )

B(E2:11/2+
1γ →7/2+

0γ )
= 10.8 and

B(E2:13/2+
3γ →17/2+

2γ )

B(E2:13/2+
1γ →9/2+

0γ )
= 19.5,

while the corresponding experimental values are 27.5(33) and
40.5(55). The degree of enhancement increases from 103Nb
both in the calculation and in the data. In the calculation,
this is caused by a cooperation of increase of the numerator
and decrease of the denominator. By close examination,
the difference in Q2, magnified by the angular-momentum
factor, If (If + 1) − Ii(Ii + 1) − �K(Ki + Kf) = 6, produces
the difference in B(E2) in the numerator. Again the differences
in the ratios from the data are within factors of 2–3. This
indicates that the main mechanism of the enhancement of
B(E2) is the vibrational collectivity as expected, and the
angular-momentum effect is also important for the enhance-

ment. Therefore, from the present analyses, it appears promis-
ing that the main component of the observed band (4) is a
three-phonon γ vibration although some mixing with states
that are not included in the present model would be possible.

IV. CONCLUSIONS

The single- and multi-phonon γ -vibrational states in 103Nb
and 105Nb have been studied by using the particle-vibration
coupling model based on the cranking model and the
random-phase approximation. The calculations have been
done in the model space including up to 4γ basis states.
This is an extension of the previous calculations including
up to 2γ basis states. Analyses of aligned angular momenta
and wave functions identified the highest lying among the
calculated collective states as the most collective and of the
highest K = � + 2n for nγ states at ωrot = 0. Then, 1γ and
2γ states have been directly identified with the observed ones
and shown to reproduce the observed spectrum precisely. In
the case of 3γ states, the Routhian of the K = � + 6 state
is lowered by strong Coriolis force. Because this alignment
process reduces K , the most collective state is expected to be
observed as a band with a lower K . Based on this scenario, the
interband B(E2)s for nγ → (n − 1)γ transitions with n = 1,
2, and 3 have been calculated by adopting the method of the
generalized intensity relation. States with n = 1 and 2 were
found to reproduce well the observed ones. The calculated
3γ → 2γ transition rates have accounted for the observed
enhancement of the transitions from the 3γ candidates to
2γ states within factors of 2–3, primarily by the vibrational
collectivity and secondly by the angular-momentum effect.
These analyses indicate that the main component of the
observed band (4) is a three-phonon γ vibration.

[1] T. Aumann, P. F. Bortignon, and H. Emling, Nucl. Part. Sci. 48,
351 (1998).

[2] A. Bohr and B. R. Mottelson, Nuclear Structure Vol. II
(Benjamin, New York, 1975).

[3] F. Corminboeuf et al., Phys. Rev. Lett. 84, 4060 (2000).
[4] M. Matsuzaki, Phys. Rev. C 83, 054320 (2011).
[5] H. J. Li et al., Phys. Rev. C 87, 057303 (2013).
[6] J. C. Durand and R. Piepenbring, Phys. Rev. C 54, 189 (1996).
[7] H. B. Ding et al., Phys. Rev. C 74, 054301 (2006).
[8] J.-G. Wang et al., Phys. Lett. B 675, 420 (2009).
[9] G. Long et al., Chin. Phys. Lett. 26, 092502 (2009).

[10] J. A. Sheikh, G. H. Bhat, Y. Sun, and R. Palit, Phys. Lett. B 688,
305 (2010).

[11] D. R. Jensen et al., Phys. Rev. Lett. 89, 142503 (2002).
[12] G. Schönwaßer et al., Phys. Lett. B 552, 9 (2003).

[13] M. Matsuzaki and S.-I. Ohtsubo, Phys. Rev. C 69, 064317
(2004).

[14] Y. R. Shimizu, M. Matsuzaki, and K. Matsuyanagi, Phys. Rev.
C 72, 014306 (2005).

[15] H. J. Li et al., Phys. Rev. C 88, 054311 (2013).
[16] M. Matsuzaki, Y. R. Shimizu, and K. Matsuyanagi, Prog. Theor.

Phys. 77, 1302 (1987); ,79, 836 (1988).
[17] M. Matsuzaki, Nucl. Phys. A 491, 433 (1989); ,A519, 548 (1990).
[18] G. Gervais et al., Nucl. Phys. A 624, 257 (1997).
[19] M. Matsuo and K. Matsuyanagi, Prog. Theor. Phys. 74, 1227

(1985); ,76, 93 (1986); ,78, 591 (1987).
[20] Y. R. Shimizu and T. Nakatsukasa, Nucl. Phys. A 611, 22

(1996).
[21] A. Guessous et al., Phys. Rev. Lett. 75, 2280 (1995).
[22] A. Guessous et al., Phys. Rev. C 53, 1191 (1996).

044313-8

http://dx.doi.org/10.1146/annurev.nucl.48.1.351
http://dx.doi.org/10.1146/annurev.nucl.48.1.351
http://dx.doi.org/10.1146/annurev.nucl.48.1.351
http://dx.doi.org/10.1146/annurev.nucl.48.1.351
http://dx.doi.org/10.1103/PhysRevLett.84.4060
http://dx.doi.org/10.1103/PhysRevLett.84.4060
http://dx.doi.org/10.1103/PhysRevLett.84.4060
http://dx.doi.org/10.1103/PhysRevLett.84.4060
http://dx.doi.org/10.1103/PhysRevC.83.054320
http://dx.doi.org/10.1103/PhysRevC.83.054320
http://dx.doi.org/10.1103/PhysRevC.83.054320
http://dx.doi.org/10.1103/PhysRevC.83.054320
http://dx.doi.org/10.1103/PhysRevC.87.057303
http://dx.doi.org/10.1103/PhysRevC.87.057303
http://dx.doi.org/10.1103/PhysRevC.87.057303
http://dx.doi.org/10.1103/PhysRevC.87.057303
http://dx.doi.org/10.1103/PhysRevC.54.189
http://dx.doi.org/10.1103/PhysRevC.54.189
http://dx.doi.org/10.1103/PhysRevC.54.189
http://dx.doi.org/10.1103/PhysRevC.54.189
http://dx.doi.org/10.1103/PhysRevC.74.054301
http://dx.doi.org/10.1103/PhysRevC.74.054301
http://dx.doi.org/10.1103/PhysRevC.74.054301
http://dx.doi.org/10.1103/PhysRevC.74.054301
http://dx.doi.org/10.1016/j.physletb.2009.04.057
http://dx.doi.org/10.1016/j.physletb.2009.04.057
http://dx.doi.org/10.1016/j.physletb.2009.04.057
http://dx.doi.org/10.1016/j.physletb.2009.04.057
http://dx.doi.org/10.1088/0256-307X/26/9/092502
http://dx.doi.org/10.1088/0256-307X/26/9/092502
http://dx.doi.org/10.1088/0256-307X/26/9/092502
http://dx.doi.org/10.1088/0256-307X/26/9/092502
http://dx.doi.org/10.1016/j.physletb.2010.04.027
http://dx.doi.org/10.1016/j.physletb.2010.04.027
http://dx.doi.org/10.1016/j.physletb.2010.04.027
http://dx.doi.org/10.1016/j.physletb.2010.04.027
http://dx.doi.org/10.1103/PhysRevLett.89.142503
http://dx.doi.org/10.1103/PhysRevLett.89.142503
http://dx.doi.org/10.1103/PhysRevLett.89.142503
http://dx.doi.org/10.1103/PhysRevLett.89.142503
http://dx.doi.org/10.1016/S0370-2693(02)03095-2
http://dx.doi.org/10.1016/S0370-2693(02)03095-2
http://dx.doi.org/10.1016/S0370-2693(02)03095-2
http://dx.doi.org/10.1016/S0370-2693(02)03095-2
http://dx.doi.org/10.1103/PhysRevC.69.064317
http://dx.doi.org/10.1103/PhysRevC.69.064317
http://dx.doi.org/10.1103/PhysRevC.69.064317
http://dx.doi.org/10.1103/PhysRevC.69.064317
http://dx.doi.org/10.1103/PhysRevC.72.014306
http://dx.doi.org/10.1103/PhysRevC.72.014306
http://dx.doi.org/10.1103/PhysRevC.72.014306
http://dx.doi.org/10.1103/PhysRevC.72.014306
http://dx.doi.org/10.1103/PhysRevC.88.054311
http://dx.doi.org/10.1103/PhysRevC.88.054311
http://dx.doi.org/10.1103/PhysRevC.88.054311
http://dx.doi.org/10.1103/PhysRevC.88.054311
http://dx.doi.org/10.1143/PTP.77.1302
http://dx.doi.org/10.1143/PTP.77.1302
http://dx.doi.org/10.1143/PTP.77.1302
http://dx.doi.org/10.1143/PTP.77.1302
http://dx.doi.org/10.1143/PTP.79.836
http://dx.doi.org/10.1143/PTP.79.836
http://dx.doi.org/10.1143/PTP.79.836
http://dx.doi.org/10.1016/0375-9474(89)90577-0
http://dx.doi.org/10.1016/0375-9474(89)90577-0
http://dx.doi.org/10.1016/0375-9474(89)90577-0
http://dx.doi.org/10.1016/0375-9474(89)90577-0
http://dx.doi.org/10.1016/0375-9474(90)90446-S
http://dx.doi.org/10.1016/0375-9474(90)90446-S
http://dx.doi.org/10.1016/0375-9474(90)90446-S
http://dx.doi.org/10.1016/S0375-9474(97)81838-6
http://dx.doi.org/10.1016/S0375-9474(97)81838-6
http://dx.doi.org/10.1016/S0375-9474(97)81838-6
http://dx.doi.org/10.1016/S0375-9474(97)81838-6
http://dx.doi.org/10.1143/PTP.74.1227
http://dx.doi.org/10.1143/PTP.74.1227
http://dx.doi.org/10.1143/PTP.74.1227
http://dx.doi.org/10.1143/PTP.74.1227
http://dx.doi.org/10.1143/PTP.76.93
http://dx.doi.org/10.1143/PTP.76.93
http://dx.doi.org/10.1143/PTP.76.93
http://dx.doi.org/10.1143/PTP.78.591
http://dx.doi.org/10.1143/PTP.78.591
http://dx.doi.org/10.1143/PTP.78.591
http://dx.doi.org/10.1016/S0375-9474(96)00304-1
http://dx.doi.org/10.1016/S0375-9474(96)00304-1
http://dx.doi.org/10.1016/S0375-9474(96)00304-1
http://dx.doi.org/10.1016/S0375-9474(96)00304-1
http://dx.doi.org/10.1103/PhysRevLett.75.2280
http://dx.doi.org/10.1103/PhysRevLett.75.2280
http://dx.doi.org/10.1103/PhysRevLett.75.2280
http://dx.doi.org/10.1103/PhysRevLett.75.2280
http://dx.doi.org/10.1103/PhysRevC.53.1191
http://dx.doi.org/10.1103/PhysRevC.53.1191
http://dx.doi.org/10.1103/PhysRevC.53.1191
http://dx.doi.org/10.1103/PhysRevC.53.1191



