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Abstract: Properties of a positive-parity side band - yrast odd-spin and yrare even-spin sequences - in 
txzOs are studied by means of the random-phase approximation based on the rotating shell model 

with triaxial deformation. Two kinds of interpretations on it - the gamma-vibrational band built 
on the s-configuration and another rotation-aligned two-quasipa~icle band - are examined. 

Although the former is preferable energetically, we need experimental information on B(E2) values 

to establish such an interpretation, A gradual character-change of the gamma vibration with negative 

signature to the wobbling motion through the rotational K-mixing in its wave function is discussed. 

We show a relation between the wobbling model of Bohr and Mottelson and the present approach 

based on an analytic study. 

1. Introduction 

Collective rotational motion changes the nuclear mean field. Properties of quad- 

rupole excitation modes made up from the single-particle motions in the mean field 

are also influenced by the nuclear rotation as a consequence. The rotational effects 

on them have two aspects. One is gradual change within each rotational band which 

appears as the rotational K-mixing in the wave function. The other is abrupt change 

brought about by the rotational alignment of quasiparticles. The latter may also 

increase the K-mixing. Both aspects were studied extensively from a microscopic 

point of view by Shimizu and Matsuyanagt . lm3). The most interesting problem 

concerning the rotation-vibration interaction in nuclei is the character-change from 

the gamma vibration with negative signature to the wobbling mode which has been 

expected to take place when we look at the high-spin continuation of the gamma- 

vibrational band as discussed by Mikhailov and Janssen 47s). Although the existence 

of the nuclear wobbling mode has been predicted in macroscopic and microscopic 

models 6-9) , we do not know in what region in the nuclear chart, spin and deformation 

it really exists. 

Level structures of slightly neutron-deficient osmium isotopes have been studied 

well using (HI, xn) reactions. Among them, a positive-parity side band (even and 

odd spin), which was interpreted as the yrare rotation-aligned two-quasipa~icle 

band ($-band) previously i’.“), was tentatively reinterpreted as the gamma-vibra- 

tional band built on the s-configuration recently I*). This is the second candidate 

of the sy-band. Since lR20s is located adjacent to the very gamma-soft heavier 
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osmium isotopes, we can expect larger triaxial deformation or more collective gamma 

vibration than the case of the first candidate, ‘64Er [ref. “)I to which theoretical 

efforts were devoted lm3). V er recently an even-spin positive-parity side band in y 

“‘Xe was also interpreted tentatively as the sy-band 14). In this case, however, more 

experimental information is necessary before we discuss the character of this band. 

We study in this paper properties of the positive-parity side band in ls20s by 

means of the random-phase approximation based on the rotating shell model with 

triaxiality described in ref. ‘). In sect. 2, we survey the characteristics of experimental 

data. Results of the calculation including both the collective and non-collective 

states are presented in sect. 3. In sect. 4, some properties of the wobbling-like 

excitation are discussed based on the uniformly-rotating-frame picture paying atten- 

tion to the K-mixing due to the Coriolis interaction. Concluding remarks are given 

in sect. 5. 

2. Characteristics of experimental data 

The gamma-vibrational band built on the g-configuration in is20s is established 

well and it shows small signature splitting in the routhian in such a way that the 

positive-signature (even-spin) sequence lies about 20 keV lower than the negative- 

signature (odd-spin) one iomi2) (fig. 1). 

On the other hand, the existence and the decay path of the band of interest have 

partly been known but its structure has not been confirmed yet. The band members 

decay to the yrast states but the gamma rays connecting this band with the gy-band 

have not been observed 1o-‘2). This decay pattern prevents the authors of refs. ‘OS”) 

from interpreting this band as the sy-band. In addition, the fact that this side band 

shows as large alignments as those of the s-band also seems to support the interpreta- 

tion as each signature part of this band is another rotation-aligned band (s’-band). 

The latter property is expected also for the sy-band. Both the even- and odd-spin 

sequences of the band under consideration cross with the gy-band at lower rotational 

frequencies than the g-s crossing. This can take place when the excitation energies 

of the sy-band relative to the s-band are lower than those of the gy-band relative 

to the g-band. 

Another interesting property of this side band is the signature splitting in excitation 

energy. The signature splitting in such a way that the odd-spin sequence is favoured 

is consistent with the behavior of the unperturbed two-quasiparticle states if the 

negative-signature (odd-spin) sequence is the AC (BC built on AB) configuration 

and the positive-signature (even-spin) one is the BC (AC built on AB) configuration. 

Here A, B and C are the familiar notations denoting the aligned quasiparticle states 

associated with the vi,3,2 shell and A and B indicate the conjugate states of A and 

B, respectively. 

If the collective interpretation is adopted, the experimental signature splitting is 

consistent with the results of ref. ‘) and the asymmetric rotor model 15,16) but contrary 
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Fig. 1. Calculated excitation energies of the gamma-vibrational band built on the g-configuration as 

functions of the rotational frequency (upper part). Experimental energy spectra of the yrast and 

gamma-vibrational bands seen from a reference state (.9,, = 23.1 h’/MeV, 9, = 132.7 h4/MeV ‘)(lower 

part). Data are taken from ref. I’) and he positive-parity side band (r = +l and -1) under consideration 

is denoted by sy according to this reference but quotation marks are attached since the character of this 

band has not been established yet. The solid (broken) lines represent the bands with signature r = +1(-l). 

to the gamma-unstable model I’). The magnitude of signature splitting increases as 

the rotational frequency increases. In addition, the excitation energies measured 

from the s-band are increasing functions of rotational frequency (fig. 2). The 

wobbling mode in the model of Bohr and Mottelson in which constant moments 

of inertia are assumed shows a similar pattern “). 

3. Microscopic calculation 

3.1. DETAILS OF THE CALCULATION 

We performed the random-phase-approximation (RPA) calculation in a uni- 

formly-rotating frame in line with refs. 2,3). The diabatic quasiparticle basis was 
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Fig. 2. The same experimental energy spectra as fig. 1 but seen from another reference state [.9,,= 
32.6 h2/MeV, 9, = 36.7 h4/MeV3, e, = 2.35 MeV and i, = 8.31 h, see ref. I”)]. 

constructed making use of the w,,~- expansion up to the second order I’). Our model 

contains p- and y-deformations but the hexadecapole (Q) deformation is neglected. 

Although it is known to be important in this mass region “) for the behavior of 

individual quasiparticle orbitals, we expect to be able to discuss the properties of 

collective quadrupole excitations quantitatively. 

The calculation was performed in the single-particle space consisting of IV,,, = 5-7 

shells for neutrons and iV,,, =4-6 shells for protons. We adopted the pairing plus 

doubly-stretched quadrupole interaction as the residual interaction between 

quasiparticles. We used the standard coupled dispersion equation for the RPA, eq. 

(2.25) of ref. *), i.e., we did not factorize out the Nambu-Goldstone mode analyti- 

cally. Referring to the energy-minimization calculation for ‘soOs [table 4 of ref. ‘I)], 

the mean-field parameters and the force strengths were fixed within each reference 

configuration. These parameters are listed in table 1. The chemical potentials were 

determined at each rotational frequency so as to give the correct particle numbers. 

3.2. RESULTS OF THE CALCULATION 

3.2.1. l%e g-y-band. We chose a standard parameter set for the ground band 

except for .+-deformation; we adopted y (Pot) = -10” (in the Lund convention), which 

was shown to give a good description of the band-crossing frequency when the 

&,-deformation was also included **), and then j3(pot) was determined so as to 

reproduce the observed Q,(2+ + O+) [ref. ‘“)I using Aoe’s. The resulting first band- 
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TABLE 1 

213 

Parameters used in the calculation. The sign of y conforms to the Lund convention. The units 

are defined as fiw, = 41 A- ‘I3 MeV and bg = ~/MO,, The upper (lower) numbers in each line are 

those for the g-band (s-band) 

P (POl) pot) 

(&A) &V) 

0.22 -10 1.05 1.03 

0.22 -20” 0.74 0.98 

Gn % 
(+) 

Ko 
(+I 

Kl 
(+) 

K2 
(-) 

Kl 
(-1 

KY2 

1.42 1.71 3.64 

1.42 1.71 3.80 

Units for Gn,p are in 10-2hw,. 

Units for ~j;) are in 10-3hw,/b~. 

3.96 4.15 3.96 4.23 

3.96 3.60 3.96 4.23 

crossing frequency is 0.308 MeV, which is larger than the experimental value 

0.256 MeV because of neglect of &,-deformation 20). The aligned angular momentum 

at fi~,,~ = 0.256 MeV, however, is 8.5h, which coincides well with the observed value 

8.3h. 

The doubly-stretched quadrupole-force strengths for the positive-signature sector 

were fixed so as to reproduce the beta- and gamma-band-head energies 24) and to 

restore the rotational invariance. (As for hwp, we adopted that of “‘W because the 

beta-vibrational state in ls20s is not known experimentally.) The resulting excitation 

energy in a rotating frame, hail, is slightly down-sloping with respect to the 

rotational frequency (fig. 1). Since the RPA dispersion equation decouples to two 

signature sectors, we can choose different values for K\-) and K$-) from K:+) and 

K2 . (+) Assuming ~(1-j = K\+) for simplicity, we adopted a larger value for K$-) than 

K$+) in order to reproduce the small signature splitting in the gy-band. The resulting 

fi%-1 is slightly up-sloping (fig. 1). This presents a sharp contrast to the calculation 

based on an axially-symmetric mean field. In the latter case, both &I,,(+) and hail 

are up-sloping and the signature splitting is reproduced with a signature-independent 

K~. Here we note that this pattern resembles the experimental data on rsoOs where 

y-deformation is thought to be smaller 2’). 

The difference between K:“’ and K$-), which reproduce the experimental signature 

splitting in the gy-band, becomes small when Kit) is weakened. This fact indicates 

that the gamma vibration with positive signature is pushed down by the beta vibration 

lying at a higher energy than the gamma vibrations, since triaxial mean fields bring 

about the AK = 2 mixing between RPA modes already at Rc+,~ = 0. Such an effect 

is absent in the negative-signature sector in accord with the fact that there is no 
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K = 0 mode in it. Consequently K~‘S which reproduce such small signature splitting 

become signature dependent. 

3.2.2. Excitation energies and structures of the RPA modes built on the s-band. The 

mean field for the s-band is thought to be somewhat more triaxial than that for the 

g-band in this mass region because of the polarization effect associated with the 

aligned (sir&. The calculation for ‘800s by Lieder et al. shows that the g-s crossing 

brings about a change of - 10” in y [ref. “)I. Referring to it, we adopted #Pot) = -20” 

and the same pcpot) as for the g-band. The pairing gaps for the s-configuration were 

calculated at hwFot = 0.2 MeV using the pairing-force strengths which gave Aoe’s at 

the ground state and then these values were fixed. 

As mentioned in the previous sections, there are two kinds of interpretations on 

the observed positive-parity side band. Our RPA calculation gives two normal modes 

at hw =G 0.9 MeV in the negative-signature sector when we use the same force strengths 

K;-) and K$-) as those for the gy( -)-band. One is the gamma-vibration-like collective 

mode, the other is the ( yi,,,,) -1 k 2 i e non-collective mode. The collective solution lies 

lower in energy and its high-spin part coincides well with the observed states 

(left-hand part of fig. 3). If we interpret the observed odd-spin sequence as the 

sy(-)-band, there is some deviation between experiment and calculation in the 

low-spin region. This situation may be related to the fact that the g-s interaction 

strength is intermediate in lB20s [see fig. 7 of ref. 2’) for example] while we adopted 

the diabatic basis. The obtained sy(-)-solution is very collective and strongly 

K-mixed. The sum of squared backward amplitudes, which is a measure of collec- 

tivity, is presented in fig. 4. The corresponding values for the gy( *)-bands are 

0.79-0.59. Detailed properties of the sy(-)-band will be discussed in sect. 4. 

The non-collective solution (the perturbed s’-band) also contains the effect of the 

residual interaction. This solution is mainly composed of the AC (DC built on AB) 

03 
0.2 0.3 0.4 0.2 0.3 0.4 

hi,,,, IMeV) 

Fig. 3. Lowest two unperturbed (vi,,,, )’ bands and RPA solutions built on the s-band in the negative- 

signature (left-hand part) and positive-signature (right-hand part) sectors. The solid (broken) lines 

represent the lowest (second-lowest) RPA solutions. The dot-dashed lines represent unperturbed 
( G13,Jz bands. 
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Fig. 4. Forward amplitudes of the lowest two (vi ,,,J* components in the two RPA solutions in each 

signature sector (solid and broken lines). Sums of squared backward amplitudes are also shown by 

dot-dashed lines. 

and BD (AD built on AI?) configurations. The former is (r = -i)’ while the latter 

is (r = + i)‘. Two-quasiproton components are also contained; they produce electric- 

transition matrix elements which will be discussed in the next subsection. The main 

components in both the collective and non-collective solutions are shown in the 

left-hand part of fig. 4. 

In order to see the sensitivity of the above results to the used ~(1~) and K$-), we 

examined the force-strengths-free dispersion equation (eq. (4.3)). Aside from some 

numerical deviation due to the space truncation in the identities used in its derivation 

(see tables II and III of ref. 2)), it reproduces the results including B(E2: Al = 1)‘s 

well (see next subsection). 

In the positive-signature sector, we did not obtain any sy-like solution when we 

used the same K’,+“s as for the gy(+)-band. In order to examine whether the 

sy(+)-like solution exists or not, we adjusted the force strengths phenomenologically. 

Here we note again that this adjustment does not have any influence on the 

negative-signature sector. We obtained an sy(+)-like solution when we weakened 

KY) and then we tuned K$+) and Kb+) so as to satisfy the following two conditions: 
(i) hw.. suC+J..> hi+,_), (ii) the slope of hi.+,.. with respect to h~,,~ is not largely 

negative. Here “sy(-t)” denotes the sy(+)-like solution obtained by using adjusted 

force strengths. We found that such solutions existed on a curve in the K$+)-K~) 

plane. The resulting two low-energy normal modes are shown in the right-hand part 

of fig. 3. There is some irregular behavior in the low-spin region of the lowest 

solution. Some non-collective modes and the g-band seen from the s-band appear 

with steep negative and positive slopes, respectively, but they are not shown. 
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The main forward amplitudes and the sums of squared backward amplitudes 

associated with both solutions are shown in the right-hand part of fig. 4. The 

second-lowest solution is mainly composed of the AD (&I built on AB) configur- 

ation which is the second-lowest unperturbed (vi iX,J2 state in the positive-signature 

sector. Therefore this solution is a perturbed s’-band. The main forward strength of 

the lowest unperturbed (vi13,2)2 state, the BC (AC built on AB) configuration, is 

contained in the lowest solution which has rather large collectivity. This is a clear 

difference from the negative-signature sector where the second-lowest RPA solution 

has the main strength of the lowest unperturbed ( r&,J2 configuration. In this sense, 

the character of the lowest RPA solution in the positive-signature sector obtained 

by using an adjusted force-strength set is considered to be intermediate between 

the sy(+)-band and a perturbed s’-band while the one in the negative-signature 

sector has a pure collective nature irrespective of K:-) and K:-). 

3.2.3. Electric-transition properties of the RPA modes built on the s-band. Electric- 

quadrupole-transition rates between RPA modes and the reference band can be 

calculated making use of Marshalek’s formula 25): 

B(E2: I,,,+ (I-Al),,,) = (ACA’)12, (3.1) 

A (d’) = [QL,, X+lRPA, (3.2) 

where QLar (Al = 0, 1,2) are the quadrupole operators quantized along the rotation 

axis (x-axis) and given as 

Q;,=& -#j+‘+&$+“‘) ) 

Q’, = i& Q’l-’ - cp) , 

Q12 = dg +Q&+‘+ @+‘+I:“‘) ) (3.3) 

where 

Q’,” = J2(1: 8KO) (Q+K *Q-K). (3.4) 

Henceforth we adopt a notation 

T nK(*) = LO’,“, Xt,dw~ (3.5) 

for the transition amplitudes associated with RPA phonons. Here n (= sy or s’) 

specifies the character of each solution and K runs 0, 1,2 for r = +l and 1,2 for 

r = -1, respectively. As indicated by the superscripts in the right-hand side of eqs. 

(3.3), transitions with Al = 0 and 2 connect the positive-signature sequence with the 

s-band while those with AI = 1 connect the negative-signature one with the s-band. 

Calculated B(E2: Al = 1) values associated with the transitions from the two 

sequences in the negative-signature sector to the s-band are shown in the left-hand 

part of fig. 5. Their w,,,-dependence is completely different from each other. The 

Coriolis interaction increases the K-mixing in the wave function of both solutions, 
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Fig. 5. Calculated B(E2: s-RPA+ s) with AI = 1 (left-hand part) and with AI = 0 and 2 (right-hand 

part) for the lowest two RPA solutions in each signature sector. The Weisskopf unit for B(E2) is also 
indicated. 

i.e., 1 Tic-)/ T;‘-‘1 approaches unity, as mrOt increases. Since Ts”-’ and Tsy” have 

the same sign (see sect. 4), B( E2: sy( -) -+ s) decreases as the K-mixing develops. 

In contrast, B(E2: s’(-) + s) increases with w,.,~ since T;‘” and TIC-’ have the 

opposite sign except for h~,,~ G 0.2 MeV where the former is nearly zero. Therefore 

we will be able to judge the character of the observed odd-spin sequence by measuring 

these values. 

In the positive-signature sector, there are two kinds of E2 transitions, AZ = 0 and 

2. Since T,“‘+’ and T,“‘+’ have the opposite sign, B(E2: AZ = 0) values are larger 

than B(E2: Al = 2) in both solutions. The irregular behavior at the high-spin region 

is due to the crossings with other non-collective solutions. 

The in-band transition probability, which is common to the s-band and excited 

bands built on it in the present framework, is given by 

B(E2: Z+I-2)=(Q’,)‘. (3.6) 

The resulting value is about 1.5 e2b2 in the whole calculated region, which is enhanced 

due to the triaxiality y < 0. 

4. Nuclear wobbling mode as the high-spin continuation of sy(-)-band 

A possible collective excitation mode in the near-yrast region of rapidly rotating 

triaxial nuclei was discussed by Bohr and Mottelson “). The excitation energy of 

this mode: 

(4.1) 
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where 

.9X > ,a,, $Z and 4; Z $a,) (4.2) 

coincides with the case in a classical asymmetric rotor 26). 

From a microscopic point of view, Mikhailov and Janssen showed that when 

(0:“‘) # 0 the dispersion equation for the coupled RPA in the negative-signature 

sector could be cast into the form4): 

where 

with 

(4.3) 

(4.4) 

(4.5) 

Details of the notation in the above equations conform to that in ref. ‘) except that 

the matrix elements iJ,(pv) (which are real numbers) were denoted by J,(~v) in 

table I of ref. “), We note that the energy of the Nambu-Goldstone mode was shifted 

to zero in refs. 4,s) ( see appendix B of ref. “)). Mikhailov and Janssen discussed that 

under a certain condition the terms including z$,(w) could be neglected and thus 

non-spu~ous modes would satisfy eq. (4.1). In this case, however, moments of 

inertia 9, and $Z defined in eqs. (4.5) depend on the excitation energy and many 

normal modes are obtained from a dispersion equation. They anticipated that the 

gamma-vibrational excitation among them changed its character gradually to the 

wobbling mode at high spin through the K-mixing due to the Coriolis force. Some 

effects of the rotational K-mixing were discussed, based on a realistic calculation 

for ‘64Er, by Shimizu and Matsuyanagi ‘). 

Marshalek showed in a different way that eq. (4.3) with w* f oit could be rewritten 

as ‘) 

(4.4) 
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where 

B(w) $(eff’(w)=9.( )+- 
F >w D(w) %(w) T 

$al,““‘(w) = .9,(w)+ ~~?Z(W). (4.7) 

Namely, the solution of eq. (4.3) can be a microscopic counterpart of the mode 

discussed by Bohr and Mottelson without the approximation adopted by Mikhailov 

and Janssen. 

There are a few other theoretical works treating the nuclear wobbling mode **‘). 

Among them, Onishi calculated the excitation energy and its spin dependence in 

the case of ‘66Er by means of a time-dependent variational method and the Bohr- 

Sommerfeld quantization rule “). But the wobbling mode has not been identified in 

actual nuclei. There are some theoretical and experimental information 27-3’) about 

the precession mode built on the high-K isomers whose shapes are thought to be 

nearly axially symmetric with respect to the rotation axis (either oblate (y = 60”) or 

prolate (y = -120”)). Although this mode also appears as a solution of eq. (4.3), 

the mean field on which it is built is completely different from the case of ‘“‘OS 

(-60” < y < 0’) considered in the present paper. In the following, we study in detail 

the properties of the sy( -)-mode presented in the preceding section with an accent 

on the K-mixing and the resulting character-change to the wobbling motion. 

The calculated moments of inertia (eqs. (4.5) and (4.7)) are presented in fig. 6 as 

functions of the rotational frequency. The ratio of {9,,9:,‘“‘(w), 9yff’(w)} at the 

high-spin region resembles the irrotationa1 moment of inertia for yiYintr = 20”. This 

resemblance seems to mean that the side band of interest can be understood also 

in terms of the asymmetric rotor model with the irrotational moment of inertia, 

which has been known to give the signature splitting in such a way that the odd-spin 

members of the K = 2 band are favoured. Since 9~,,=(w) is large (and the ordering 

of {4,, 9,(w), 9,(w)} is different), the approximation adopted by Mikhailov and 

Janssen does not hold. 

The results for the gy(-)-band are shown in fig. 7 for comparison. The quantity 

9>,=(w) itself and thus the differences between {9,(w), .9a,(w)} and {$iye’)(w), 

9~“‘(w)} are small. Accordingly their approximation holds well in this case. The 

pattern of {-a,, 9j?ff’(w), 9:“‘(w)} IS completely different from that for the sy(-)- 

band but again their ratio resembles the irrotational moment of inertia for small 

yintr except for hwrot 2 0.25 MeV where a two-quasiparticle state becomes lower in 

energy than the gy( -)-band. The change in 4, caused by the alignment of two 

quasiparticles is well known. The changes in {9,(w), 4,(w), 9+.(w)} are also the 

direct results of the alignment. Namely, in the right-hand side of eqs. (4.9, iJ,(wv) 

and J,(puv) involving the aligned orbitals become large in addition to the fact the 

denominators of these terms become small. As a result .P(w)‘s become large. In 
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1860s, B(E2: O,+ 2,,) in addition to B(E2: O,+ 2J is known; 32*33), the ratio of them 

gives the zero-point amplitude ‘yO= 17”. If we assume a similar y0 also for ‘820s, 

we can consider that the g-band ( y(pot) = -10” adopted) is situated at the vibrational 

region while the s-band (ycpot) = -20” adopted) is situated at the rotational region 

with respect to the -y-degree of freedom. 

The feature of the rotational K-mixing can be seen directly in the o,,,-dependence 

of the transition amplitudes associated with the RPA mode under consideration. 

Their ratio is shown in fig. 8. The isoscalar amplitudes ?$) are defined as 

%‘= W, XIT&PA, (4.8) 

where the quantities with tilde denote the doubly-stretched ones ‘). Making use of 

eqs. (4.3), (4.4) and (4.5), this ratio can be expressed analytically as 

?$-I 2Q2 fc-) C(w) 

T-=- 
-- 

1 v%,- cr2 K:-) D(w) ’ (4.9) 

where (~k’s are the deformation parameters of a rotating potential 

h’ = hsph - c cy,Q(,t) - hw,,,J, . 
K=0,2 

(4.10) 

The factor including (YK’s in eq. (4.9) can be expressed as a function of ycpot) 

(appendix B of ref. ‘“)): 

(4.11) 

Here we note that the sign of y is defined oppositely in ref. 34). 

Since we can show that the ratio C(w)/D( w associated with the collective mode ) 

is negative definite by utilizing the relation between the microscopic and macroscopic 

models (see eq. (4.21) and the discussion following it), we can discuss the y- 

dependence of the relative sign between ?“-’ and ?-). This relative sign has never 

0 / I I 

02 0.3 0.4 

fiw rot ( MeV 1 

Fig. 8. Ratio of the doubly-stretched isoscalar-quadrupole-transition amplitudes associated with the 

sy(-)-band. 
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been discussed up to now although it has important physical meanings. As was 

discussed in sect. 3, the behavior of B(E2: sy( -) + s) is a direct result of the coherence 

between the proton part of the transition amplitudes. Here we note that the ratio 

of the proton amplitudes and that of the isoscalar amplitudes coincides well because 

of the isoscalar character of the mode under consideration. The above phase rule, 

on the other hand, gives an interesting prediction; the ratio f$-‘/ ?‘,-’ is negative 

and thus the B(E2: AZ = 1) will increase as the rotational K-mixing develops in the 

case of the precession mode built on either near-prolate or near-oblate mean fields. 

This prediction is consistent with the fact that this mode is excited by an operator 

Q:, [refs. “~“)] and thus 

l(-lxPo:ll-)l= I[&, Q:IIRPAI=&-:?- %‘I (4.12) 

is large. Since the precession mode built on near-oblate mean fields is the mode to 

which the gamma vibrations in nuclei with y > 0 change their character through the 

K-mixing, the B(E2: AZ = 1) between the K-mixed collective mode with negative 

signature and triaxial yrast states will show contrasting behavior depending on the 

sign of y. 

In addition to the properties of even-even nuclei, this phase rule determines the 

property of the quasiparticle-vibration-coupling wave function of odd-A nuclei; the 

K-mixed gamma-vibrational phonon with negative signature mixes strongly into 

the unfavoured state when y < 0 and the first-order vibrational effect is dominant. 

This is a combined result with the phase rule between the single-particle matrix 

elements 35). A numerical example can be found in the “lqp band” case in table I 

of ref. 19), where the sign of y is defined oppositely. 

Marshalek discussed a kind of relation between the microscopic and macroscopic 

descriptions of the nuclear wobbling mode ‘). Eq. (4.9) enables us to present another 

relation between them. Henceforth we assume the non-stretched quadrupole interac- 

tion with a common strength and the Hartree field derived from it for the sake of 

simplicity. Bohr-Mottelson’s wobbling mode is defined, aside from an overall phase, 

as “) 

where 

with 

(4.13) 

(4.15) 
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The principal-axis (PA) frame components of angular momentum in eq. (4.13) can 

be expressed in terms of the operators in the uniformly-rotating (UR) frame as ‘) 

jJ(.PA) = #.“R) _& (Jx)Q$-’ , ? 
2 

J’PA’=JI(“R)_ 
I z (4.16) 

where K is the non-stretched quadrupole-interaction strength. Accordingly eq. (4.13) 

can be written as 

with 

X6 = a,viJ$“R’+ aJLUR’+ 6,,&‘+ b,Qi-’ , (4.17) 

x+Y 
aZ=-- 

rn’ 

(4.18) 

The transition amplitudes, therefore, are calculated as 

T’,-‘=[Q:-‘,X~]Rp,=(~(QI:‘)-(Q~‘))a,,, 

Tie’ = [ Qi-‘, XkIRPA = -2( @+‘)a,. (4.19) 

These equations mean that the transition amplitudes have nothing to do with the 

second terms in eqs. (4.16) which assure the algebra of the PA components. Since 

the factor including aK’s in eq. (4.9) can be written in terms of the expectation 

values of quadrupole operators, requiring a kind of selfconsistency between the 

potential and the density, as 

3 0:“) 
a,=&(QI:‘)-(Q:+))’ 

(4.20) 

finally we obtain a relation between the microscopic quantities C(w) and D(w) 

and the macroscopic ones x and y from eqs. (4.9), (4.20) and (4.19) 

C(w) a. y+x x-z_=- 
D(w) a,. y-x’ 

(4.21) 

Since X& is normalized as x*-y*= 1, C(w)/D(w) is negative definite. Here we 

note that it does not hold generally for non-collective modes. 
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Eq. (4.21) can be obtained also from a direct comparison of the expressions for 

B(E2: I + I - 1) without the aid of eq. (4.16) as follows. After substituting eq. (4.20), 

eq. (4.9) can be rewritten by using the quadrupole moments quantized along the 

x-axis, 

7-p J?;(Q~>-~(Q;> C(w) 

T’,-‘=d3(Qb>+vT(Q:> D(w) ’ 
(4.22) 

when the non-stretched quadrupole interaction with a common strength is assumed. 

The reduced transition probability, therefore, takes the form: 

B(E2: 1+I-l)~{&(Q~)(C(o)-D(o))-J?J(Q;)(C(w)+D(o))}2. 

(4.23) 

On the other hand, it is given in the model of Bohr and Mottelson by 

Consequently we obtain eq. (4.21) again. 

5. Concluding remarks 

We have studied the properties of the positive-parity side band of “‘0s by means 

of the RPA based on the rotating shell model with triaxial deformation. Having 

determined the quadrupole-force strengths which reproduced the gy( f )-bands, we 

performed the RPA calculation for excited bands built on the s-band. In the 

negative-signature sector, the lowest solution is fully collective and the second 

solution is a perturbed s-band. The B(E2: Al = 1) values between these solutions 

and the s-band show contrasting w,,~- dependence. These results have been confirmed 

by using the force-strengths-free dispersion equation. Therefore, by measuring them, 

we will be able to judge the character of the observed odd-spin sequence although 

the collective interpretation seems to be preferable in view of the excitation energy. 

On the other hand, the result for the positive-signature sector is sensitive to force 

strengths; since we did not obtain any sy(+)-like solution when we used the same 

~‘Kf”s as those for the g?(f)-band, we adjusted them phenomenologically. The 

character of the resulting lowest even-spin sequence is intermediate between the 

sy-band and a perturbed s’-band. 

Detailed properties of the calculated sy(-)-solution have been studied. In par- 

ticular, the analyses of the dynamical moments of inertia and the K-mixing feature 

indicate an incipient character-change to the wobbling motion at its high-spin region. 

This result is consistent with the Janssen-Mikhailov’s prediction that such character- 

change occurs at Z- 20h in this mass region ‘), which corresponds to ho,,,-- 

0.3 MeV. 
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A relation between the wobbling model of Bohr and Mottelson and the present 

approach with the uniformly-rotating-frame language has been discussed by starting 

from an analytic expression for the ratio of the transition amplitudes. The y- 

dependence of it has been derived from this study. 

The behavior of the dynamical moments of inertia in addition to the signature 

splitting in excitation energy seems to indicate the possibility that the properties of 

the side band may be explained also in terms of the asymmetric rotor model with 

the irrotational moment of inertia. Such a calculation and also more experimental 

data are desirable. 
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