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Abstract. One of the useful and practical methods for solving quantum-mechanical many-
body systems is to recast the full problem into a form of the effective interaction acting within a
model space of tractable size. Many of the effective-interaction theories in nuclear physics have
been formulated by use of the so called Q box introduced by Kuo et al. It has been one of the
central problems how to calculate the @ box accurately and efficiently. Introducing new basis
states, the Hamiltonian is transformed to a block-tridiagonal form in terms of submatrices with
small dimension. With the transformed Hamiltonian we derive a recursion method of calculating
the Q box non-perturbatively and analytically. The Q box given in this study corresponds to
a non-perturbative solution for the energy-dependent Hamiltonian interaction which is often
referred to as the Bloch-Horowitz or the Feshbach form. The present approach has a possibility
of resolving many of the theoretical and practical difficulties encountered in the calculation of
effective-interaction and/or Hamiltonian.

1. Introduction

In nuclear many-body physics various methods have been proposed, on the basis of the
shell model, to solve the Schrodinger equations for nuclear many-body systems starting with
realistic nucleon-nucleon(NN) interactions. These methods, which are called the ab initio
calculations, include the Green’s function Monte Carlo method, the no-core shell model, the
effective interaction for hyperspherical harmonics method, the coupled cluster method and the
unitary-model-operator approach. Much effort has been made also to diagonalize a matrix of
a many-body shell-model Hamiltonian in a huge dimensional Hilbert space on the basis of, or
alternatively to, the Lanczos method.

The effective interaction theory has been one of the ab initio method which has aimed at
solving the nuclear properties starting from realistic nucleon-nucleon forces. Most of the effective-
interaction theories given to date have been formulated in terms of the Q box introduced by
Kuo and his collaborators. Originally the Q box has been defined as the sum of linked and
unfolded diagrams. In the algebraic or non-diagrammatical approach the Q box is equivalent to
the energy-dependent effective Hamiltonian given by Bloch and Horowitz and Feshbach which
has been studied extensively on the Brillouin-Wigner perturbation theory.
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It has been established that the effective interaction can be expressed as a series expansion
in terms of the @ box and its energy derivatives. The series can be summed up by using either
the Krenciglowa-Kuo (KK) or the Lee-Suzuki(LS) methods. It has been known that, in general,
two methods have different convergence properties: Many of the numerical calculations have
shown that the KK method yields the eigenvalues for the eigenstates which have the largest
overlaps with the chosen model space. However, it has been pointed out that the rigorous
convergence condition for the KK method has not yet been clarified. On the other hand the LS
method reproduces the eigenvalues which lie closest to the chosen unperturbed energy. Both of
the two approaches reproduce only certain of the eigenvalues of the original Hamiltonian. This
restriction is not, in general, desirable. N

Recently a new vertex function, called the Z box, has been introduced to yield the eigenvalues
of a given Hamiltonian H regardless of the properties of the eigenstates [1]. The Z box itself
has also been defined as a function of the @ box. At present the most important remaining task
would be to establish a method of how to calculate the @ box rigorously and efficiently. The
perturbative calculation method for the () box has been established and applied widely. In the
derivation of the nuclear effective interaction, the convergence of the order-by-order calculation
was confirmed in many of the numerical studies. However, a basic problem of the convergence
of its perturbation expansion has not been made clear theoretically for general cases. Main
concern of the present study is to propose a non-perturbative method for obtaining the ) box
for any of the starting NN interactions. Detailed discussions have been given in Ref.[2].

2. Effective-interaction theory by means of similarity transformation

2.1. Basic equation for effective interaction

Let us begin with a Hamiltonian H defined in a Hilbert space. We divide the space into a model

space (P space) and its complementary space (Q space). When all the eigenvalues of an operator

H.g given in the P space coincide with those of H, we call Hog an effective Hamiltonian.
There are various ways of constructing Heg. We adopt the following standard one. First we

introduce an operator w that maps states in the P space and those in the () space to each other,

with the properties,

w=QuwP, (2.1)
w" =0 (n>2).

Suppose that the operator w satisfies the following equation;
QHP+ QHQw — wPHP — wPHQw = 0. (2.3)

This equation for w was first derived by Okubo. Once a solution w to Eq.(2.3) is given, H.g is
written as

Hes = PHP + PHQu. (2.4)

It has been proved that the effective Hamiltonian Heg can be derived as in Eq.(2.4) with the
solution w to Eq.(2.3)

2.2. Krenciglowa-Kuo’s solution

Since Eq.(2.3) is a nonlinear matrix equation for w, it is difficult to find a general solution. The
following formal solution, however, has been known and is enough for applications. We rewrite
Eq.(2.3) as

QHP + QHQw — wHeg = 0, (2.5)
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using Eq.(2.4). Here the eigenvalue equation for Heg is given by

Hegr|pr) = Ei|or)- (2.6)

If the operator w is a solution to Eq.(2.3), we can verify that the eigenstates {|¢x)} belong to
the P space and each eigenvalue Ej coincides with one of those of H.
Using Eq.(2.5), w is given by

d
1 ~
W_;mQHPWkM%L (2.7)
and from Eq.(2.4) Heg becomes
d
Hegr = PHP+ZPHQE QHQQHP\¢k><¢k|, (2.8)
k=1

where (¢y| is the biorthogonal states of |¢;). Here we introduce an operator in the P space
called the @) box

Q(E) = PHP + PHQEIWQHP, (2.9)

where E is an energy variable. The @ box thus defined is equivalent to the energy-dependent
effective Hamiltonian referred to as the Bloch-Horowitz and /or the Feshbach forms. In terms

of Q( ), Heg is expressed as

Q(Ex)| 1) (], (2.10)

tﬂg

k=1

from which the following self-consistent equation can be derived
Q(EL)|¢k) = Ekl¢x)- (2.11)

The H. in Eq.(2.10) is just a formal solution in the sense that unknown Ej, |¢), and (g
appear on the right-hand side, but the following method of solving is available: In order that
the solutions to Eq.(2.6) coincide with those given by Eq.(2.10), they selfconsistently satisfy the
iterative equation

QUEM) gy = B gty (2.12)

where E,(;H and \¢(n+ )> are the (n + 1)-th order eigenvalue and eigenstate of the Q) box,
respectively, given by the n-th order eigenvalue El(gn
Kreciglowa-Kuo method.

From Eq.(2.9), we see that Q(E) has poles at energies {eq}, where ¢, is one of the eigenvalues

of QHQ,

). This iterative scheme has been called the

QHQ|q) = &4q)- (2.13)

These singularities of the Q box lead to some difficulties in numerical calculations. These
arguments suggest that some further improvements are desired for the ()-box method although
it has been applied widely to practical problems.



17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012021 doi:10.1088/1742-6596/529/1/012021

2.5. The Z boz method R R
In order to resolve the pole problem we have introduced a vertex function Z, called the Z box,
as[1]

~ 1 ~ ~
Z(F)=——|Q(F) — EQ1(F)|, 2.14
(E) 1_Ql(E)[Q( ) = EQ:(E)] (2.14)
where F is an energy variable and
Q1(E) = d%f). (2.15)

The Z box has the following properties:

(i) The Z box satisfies the selfconsistent equation

Z(Ey)|ér) = Ex| o), (2.16)

where {E}} are the eigenvalues of H and {|¢x)} the model-space eigenstates which are the
same as in Eqs.(2.10) and (2.11).

(ii) The Z(EQ) also satisfies the self-consistent equation for the eigenvalues {¢,} of QHQ as
Z(eq)|1q) = eqlpq)- (2.17)
(iii) Both of {Ej} and {e,} satisfy the selfconsistent equations as in Eqs.(2.16) and (2.17),
respectively, but the derivative of the Z box takes different values as

dZ(E) {0 for E = Ej, 2.18)

dE 2 for F =¢,.

Using these properties we can divide the solutions of the selfconsistent equations into two
parts, namely, the true eigenvalues {Ej} of H and the pole energies {e,}.

(iv) The E(E) is finite and differentiable at any energy variable E, even at pole positions {g,}
of the @ box. This may be clear from Eqs.(2.17) and (2.18).

3. Calculation of the @ box by means of recurrence relations

3.1. Block tridiagonalization of Hamiltonian R

Before discussing the calculation procedure of the () box, we transform the Hamiltonian H into
a tractable form by changing basis vectors. First we introduce

Yp = PHQ - QHP. (3.1)

The Yp is an operator in the P space, which is Hermitian and positive semi-definite, that is,

(1)

Y~ = 0 in the eigenvalue equation

1
Yolpe) = vy lp). (3.2)
Suppose that d; eigenvalues are nonzero among {yl(gl)}. In terms of the eigenvectors {|pg),k =
1,2,--- ,dy} with nonzero eigenvalues, we define normalized vectors {|q](€1)>} in the @) space as
(1) 1
lg, ") = TQHP\pk% (k=1,2,--- ,dy). (3.3)
Yx
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They are orthogonal to each other and span the d;-dimensional subspace )1 in the @ space.
Then the projection operator onto the ()1 space becomes

d
= > lac el (3.4)
k=1
The complement of the (01 space in the ) space is given by
Q1 =Q-Qu (3.5)
Equation (3.3) indicates that
QHP = Z uilay”) (v (3.6)
then we have
QHP = QHP (3.7)
which leads to
QHP =0. (3.8)

Next, a similar manipulation with replacing P and Q with Q; and @, respectively, leads
to another orthogonal system and the subspace, namely the ()2 space. Repeating the same
procedures leads to the following: Decompose the ) space as

Q=Q+Q+ - +Qn+--. (3.9)

Basis vectors of the subspace Q,, namely, {|g, m)>,k = 1,2,--- ,dy}, define the projection
operator

Qm = Z ™) g™ (3.10)
The basis vectors {|q/,C >} are given as follows: Introduce Yy, , as
YQm—l = melHqu . @mf‘lHmel (311)
with
Q-1 =Q—(Q+Q2+ - +Qm 1) (3.12)
Its eigenvalue equation is
—1 —1
Yol "y = y™g ™). (3.13)
In general new orthogonal bases
(m)y _ H m—1) 3.14
|qk ) Qm 1HQpm— 1‘qk ) (3.14)

WK
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are derived from the eigenvectors {|q;€(m71)>} with nonzero eigenvalues {y,(cm)} They span the
subspace Q.. With the projection operators @Q,, and Q,, 1 we obtain, from Eq.(3.14), an
expression written as

dm
QuHQm-1 =Y /™ la™) (g™ . (3.15)
k=1

We conclude from the above discussion that

PHQ, = QunHP =0 (m > 2), (3.16)
QmHQm—l—k = Qm—l—kHQm =0 (k > 2) (3'17)

hold for the subspaces {P, Q1,Q2, -+ ,@Qm, - }. This means that the given Hamiltonian H is
transformed to a block-tridiagonal matrix

PHP PHQ, 0 0
QHP QHQ1 Q1HQ: 0
H= 0 QHQ1 QHQ> Q:HQ3 --- | (3.18)
0 0 QsHQ2 Q3HQ3

where each block matrix is at most d-dimensional.

3.2. Calculation of the @ bozx
We introduce an operator x(F) defined as

1
X(E) = EQHP (3.19)
with
e(E)=Q(F — H)Q. (3.20)

The @ space is decomposed as in Eq.(3.9), and also y(FE) is as
X(E) = x1(E) + x2(E) + -+ xn(E) +---, (3.21)
where
Xn(E) = Qn X(E)P. (3.22)

The operators {x,(F)} obey the recursion relation written as|2]

Qi e(E){x1(E) + x2(E)} = Q1 HP, (3.23)
Qn e(E){anl (E) + Xn(E) + Xn+1 (E)} =0, (n > 2)- (3'24)

Note that, from Eq.(3.7), the @ box in Eq.(2.9) can be written as

Q(E) = PHP + PHQ,x1(E). (3.25)
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Then the calculation procedure of the @ box is reduced to solving the recursive equations and
finding the solution for x;(E).
It has been proved that the solution for y;(E) is given by
1

x1(E) = el(E)QlHP: (3.26)

where the energy denominator is determined from the following descending recurrence relations;

1

'evn,l(E) = en,l(E) — anl,nﬁEv)H’n,nfl' (327)

with
en-1(E) = Qn-1(E — H)Qn-1, (3.28)
H;j = Q;HQ);. (3.29)

Suppose that, for a sufficiently large number N, the condition

1
—HpynN- 1 3.30
I gyl < (3:0)

is satisfied, where the symbol || X || means the norm of a matrix X. If we start with n = N
in Eq.(3.28), we have a sequence {en_1(E),en_2(E), -} and finally we have e;(FE). Then we
may write the () box as

~ 1
Q(F)=PHP+PHQ ——Q HP. (3.31)
e (E)
The above expression indicates that a certain energy denominator é1(F) exists such that the
Q(FE) can be represented by a sum of only second-order perturbation terms[2].

4. Model calculation R
We solve the eigenvalue problem for the Hamiltonian H in the framework of the Z-box
method[l, 2]. The calculation procedure is as follows: We define d functions {Fy(E),k =

1,2,--- ,d} through the eigenvalue equation for Z(E) as
Z(B)|G) = Fi(B)|C), k=1,2,--- ,d. (4.32)

We further introduce functions {F} (E),k =1,2,--- ,d} as

Fi(E) = <Ck fl]Z; ‘<k> (4.33)

Using the properties in Eqs.(2.16)- (2.18), we can prove that the true eigenvalues {E}} of H can
be obtained by solving the equation

Fy(E) - FE

I s mEy - (434)

gr(E) = {

where Fy is a parameter chosen suitably. We solve Eq.(4.34) by means of the parabolic-
interpolation method given in Ref.[2].
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In order to obtain some assessments of the present approach we study a model problem. We
start with a model Hamiltonian H of which matrix elements are given by

(i|H|j) = (i + Bi*)dij + vaij (4.35)

with
Tij = 2{ V2(i + j) — { \/§(i+j)]} 1, (4.36)

where [X] is Gauss’s symbol which means the integer part of a real number X. A set of {z;;}
are recognized as pseudo random numbers satisfying

The «, 8 and v are the parameters chosen suitably. The total dimension of H is taken to be
Ny = 100. As for the P space we choose a two-dimensional space (d = 2) spanned by the two
states which have the lowest and second lowest diagonal energies of H. We suppose that the
subspaces {Qg, k =1,2.---,N,} are all d-dimensional and the number of the subspace {Q}
is given by N, = (N}, —2)/2 = 49.

In Table 1 we show the results for the lowest two eigenvalues of H calculated by the parabolic-
interpolation method[2]. The convergence is markedly fast. With three times of the changes of
the interval [a, b], convergence is reached with accuracy better than 10 decimal places.

Table 1. Correct digits of the lowest two
eigenvalues of H calculated by the parabolic-
interpolation method. Initial intervals are
taken to be [a,b] = [0.0,1.0] and [2.5,3.5]
for Fy and Ejs, respectively. The numbers
of repeats means the number of changes of
the interval [a, b]. All the values of E; and
FE5 are dimensionless.

E; No. of repeats  Calculated value
Ey 1 0.365

0.365550
0.365550151994574
2.999

2.9994240
2.99942408730107

Es

W N W N

It would be interesting to examine the dependence of the calculated eigenvalues of H on the
number of the subspaces {Q} taken into consideration. Let Kpax be the maximum number
of the subspaces {Qr}. The dependence on K.y is shown in Figs.1. It is clear that, as Kpyax
approaches to N,=49, the eigenvalues converge to the exact values. These results suggest a
possibility of introducing a new way of truncation in the calculation of effective interaction,
instead of making it according to the magnitude of energies of intermediate states.
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0.55
0.50}
LT 0.45}

0.40}

0.3% 10 20 30 40 50
Kmax

Figure 1. Convergence of F; as a function of Ky ,x. The K.y denotes the block dimension
which means the number of the subspaces {Qg, k=1,2,--- ,Kmax} taken into calculation. In this
model calculation K,y is in the range 1 < Kpax < 49. The exact value of F; is 0.36555-- - as
given in Table 1. The value of E; is dimensionless.

3.25
3.20}
3.15}

. 3.10}
3.05}
3.00} ® ¢ o o o

2.955 10 20 30 40 50

Figure 2. Convergence of 5y as a function of Ky,x. The exact value of Fs is 2.9994- .. Other
notations are the same as in Fig.1.

5. The relation of the present method to the block Lanczos method
The calculation of the ) box can be carried out without matrix inversion of QHQ which is
usually a huge-dimensional matrix. All the procedures for obtaining the () box are reduced to
calculations of small-dimensional submatrices in the block-tridiagonalized Hamiltonian.
Regarding the block tridiagonalization of the Hamiltonian, the present approach has a
common aspect to the so called block Lanczos method based on the theory of the Krylov
subspaces. For a given model space P and a Hamiltonian H, the subspaces leading to a block-
tridiagonal form of H are determined uniquely. Therefore, the subspaces given in the present
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study are the same as those of Krylov. However, the choice of basis states of each subspace is
ambiguous. For determining the basis states we employ a different calculation procedure from
the usual one in the block Lanczos method, as shown in Eq.(3.14). We show that the basis
states thus introduced are suitable for the purpose of calculating not only the Cj box but also
the eigenstates of H[1].

It is well known that roundoff errors makes the Lanczos method somewhat difficult to use in
practice[3],[4]. The central problem is a loss of orthogonality among the Lanczos vectors that
are produced by iteration. There are several ways, say selective or full reorthonormalization to
cope with this problem[3],[4]. However, there is no need of additional orthonormalization of the
relevant basis in the present formulation, as long as we concern the effective Hamiltonian and
its eigenvalues in the model space.

6. Summary and outlook R
The main purpose of the present study has been to derive a new method of calculating the @)
box as accurately as possible even if the original Hamiltonian H is given in a huge-dimensional
space.

The present formulation[2] consists of two steps: First one is to transform a given Hamiltonian
H to a block-tridiagonal form by dividing the complementary space () of the P space into
subspaces {Qg, k =1,2,--- } with tractable dimensions. If the subspaces are chosen suitably the
Hamiltonian is ‘rraanormed to a block-tridiagonal form. With the Hamiltonian thus transformed,
the next step is to derive coupled equations for determining the Q box. We have shown ‘rha‘r
these coupled equations can be solved by means of a recursion method.

Given the Q box, we have applied the Z-box method for solving the eigenvalue problem of
a Hamiltonian H[2]. In order to assess the present method we have made a test calculation
by introducing a 100x100 model Hamiltonian. We have confirmed that the present method
reproduces successfully the eigenvalues of the original Hamiltonian.

There would be two applicabilities of the present approach: One is to solve the eigenvalue
problem for a Hamiltonian given in a huge dimensional space. Once the ) box is given, the
eigenvalues and the corresponding eigenstates can be calculated according to the procedures in
the present framework. The other is to apply the present formalism to the derivation of the
effective interaction to be used in the shell-model calculations.

The present study is based essentially on the algebraic approach to the effective Hamiltonian.
When we want to calculate the effective interaction acting among valence nucleons, it is necessary
to represent all the terms contained in the @ box in terms of linked diagrams. A general and
rigorous relation is not made clear between the present approach and the linked-and-folded-
diagram theory. We note that algebraic approaches can not always exclude unlinked diagrams
in general. Therefore, this formal relation is an interesting problem to be clarified.
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