
Pionic pair condensation in finite isospin
chemical potential

Masayuki Matsuzaki

Department of Physics, Fukuoka University of Education, Munakata, Fukuoka 811-4192, Japan

Abstract. We study the character change of the pionic condensation at finite isospin chemical
potentialµI by adopting the linear sigma model as a non-local interaction between quarks. At low
|µI | the condensation is purely bosonic, then the Cooper pairing around the Fermi surface grows
gradually as|µI | increases.
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Recent progress in computer power makes it possible to reliably simulate quantum
chromodynamics (QCD) at finite temperatureT. As for finite density, however, the well
known sign problem limits simulations. Alternatively, QCD at finite isospin chemical
potentialµI = µu− µd (whereµu and µd denoting the chemical potential ofu andd
quark, respectively) as well as the SU(2) color systems, in which the sign problem does
not exist, are studied to give insights into the actual finite density physics. One of the
most interesting aspects of the finiteµI systems is that they accommodate pion conden-
sation for|µI| > mπ [1], with mπ denoting the mass of pions. Son and Stephanov [2]
predicted that the pion condensed phase evolves to Cooper pairing betweenu andd̄ (d
andū) for µI > 0 (< 0) at high|µI|, but the quantitative process of the character change
of the condensation has not been discussed.

The BEC–BCS crossover has long been expected to occur in various quantum sys-
tems [3, 4]; it was experimentally observed in ultra cold atomic gases, in which the
strength of the interaction can be tuned artificially, only recently. At least in principle, it
can occur also in systems governed by the strong interaction, in which the strength of the
interaction can not be tuned artificially. Rather, the change in the environment, typically
density, would lead to the crossover [5]. In symmetric nuclear matter, the neutron (n)–
proton (p) pairing in the3S1 + 3D1 channel that leads to bound deuteron formation was
studied [6]. Then–n andp–p 1S0 pairing, that has attracted attention from viewpoints of
both nuclear structure and neutron stars, however, does not reach the BEC [7, 8]. In inter-
mediate density quark (q) matter, the present author discussed that the spatial extension
of quark Cooper pairs in a color superconductor is comparable with the mean interpar-
ticle distance [9]. Later, a wide enough density region was studied [10] and showed that
the diquark pairing becomes weak at very high density.

Since the mechanism of the fermion-antifermion condensation that produces the
fermion mass is essentially the same as the BCS pairing as recognized in Nambu and
Jona-Lasinio’s celebrated paper [11], the evolution of the charged pion condensation to
q–q̄ Cooper pairs can be analyzed in the context of the BEC–BCS crossover in terms
of the spatial structure of the pion condensation. To this end, one must introduce a non-
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local interaction betweenq and q̄ that gives momentum dependent condensations. In
the present study, we adopt the linear sigma model, which respects chiral symmetry,
as an inter-quark interaction, since 1) the pion condensation occurs as a spontaneous
symmetry breaking among three pions that have light but non-zero masses after the
chiral symmetry breaking between the sigma meson and the pions, and 2) the effect of
high |µI| on it has long been studied [1, 12, 13].

The adopted effective Lagrangian for the quarks, sigma mesons and pions is

Leff = Lq +LM +Lcouple,

Lq = q̄(i /∂ −mq +
µI

2
γ0τ3)q,

LM =
1
2
(∂µσ∂ µσ +∂µ

−→π ·∂ µ−→π )−U(σ ,−→π )+ µI(π1π̇2−π2π̇1)+
µ2

I

2
(π2

1 +π2
2),

U(σ ,−→π ) =
λ 2

4
(σ2 +−→π 2)2− λ 2 f 2

π −m2
π

2
(σ2 +−→π 2)− fπm2

πσ ,

Lcouple=−Gq̄(σ + iγ5−→τ ·−→π )q, (1)

where fπ and mπ stand for the pion decay constant and the pion mass, respectively.
Hereafter, quantum fluctuations are indicated by primes.

It is well known that, in the mean field level,Ueff = U(σ ,−→π )− µ2
I

2 (π2
1 + π2

2) has the
minimum at

〈σ〉=
fπm2

π
µ2

I

, 〈π〉2 =
µ2

I −m2
π

λ 2 + f 2
π −〈σ〉2 (2)

for |µI|> mπ , assuming〈π3〉= 0 [1, 12]. We take〈π1〉= 〈π〉 and〈π2〉= 0without loss of
generality. After expandingLM up to the quadratic terms inσ ′ andπ ′i , diagonalization
of the coupled Klein-Gordon equations forσ ′, π ′1 andπ ′2 gives the mass eigenvalues,
one of which is zero as done in Ref. [12]. But the meson mixing can not be calculated
since the3×3 mass matrix is not regular. Thus, another approximation must be sought.
Since the essential character of the meson propagation in the pion condensed phase is
the rotational motion in the isospin space, we adopt a polar coordinate representation,

π± =
1√
2
(π1± iπ2) =

1√
2

π exp(±iθ) =
1√
2
(〈π〉+π ′)exp(±iθ), (3)

without expanding the angular field. This representation assures the conservation of the
third component of the isospin current of the total system, within the quadratic terms of
the fluctuating quantum fields. After confirming this point, we write down the coupled
Klein-Gordon equations retaining the lowest order terms in each equation as

∂µ∂ µσ ′+(2λ 2〈σ〉2 + µ2
I )σ ′+2λ 2〈σ〉〈π〉π ′ =−G(q̄q)′,

∂µ∂ µπ ′+2λ 2〈π〉2π ′+2λ 2〈σ〉〈π〉σ ′−2µI〈π〉θ̇ =−G(q̄iγ5τ1q)′,

〈π〉∂µ∂ µθ =−G(q̄iγ5τ2q)′, ∂µ∂ µπ ′3 + µ2
I π ′3 =−G(q̄iγ5τ3q)′. (4)

Here we make one additional approximation to handle the set of equations: We ignore
−2µI〈π〉θ̇ in the second equation that corresponds to the Coriolis coupling. The ob-
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tained set contains 1) theσ–π mixing, and 2) the rotational massless field due to the
existence of the pion condensation〈π〉.

The equation of motion of the quark propagator,Gi j
αβ (x− x′) where i, j and α, β

represent isospin and Dirac indices respectively, is given by

(i /∂ −mq +
µI

2
γ0τ3)G(x−x′) = δ 4(x−x′)− iG〈0̃|T(σ(x)+ iγ5−→τ ·−→π (x))q(x)q̄(x′)|0̃〉.

(5)
After sorting the mean field terms inσ + iγ5−→τ ·−→π to the left-hand side, we substitute
the inverted Eq.(4) to Eq.(5). Then we perform the Wick decomposition of the 4-point
term. Only the Fock terms that lead to the non-local selfenergyΣ(x−y), which depends
on G(x− y), appear since the Hartree (mean field) terms have already been sorted. By
a Fourier transformation and an isospin decomposition, we obtain a Gor’kov [14] type
equation,

(
γ0(ω−h±µI/2)+Σ0±Σ3 −G〈π〉iγ5 +

√
2Σ∓

−G〈π〉iγ5 +
√

2Σ± γ0(ω−h∓µI/2)+Σ0∓Σ3

)(
G0±G3√

2G±

)
=

(
1
0

)
,

(6)
with h = γ0γ · k + γ0(mq + G〈σ〉) being the free single particle Hamiltonian with the
constituent quark mass,Mq = mq+G〈σ〉. This form indicates that the present subject is
a pairing problem. In the following we take the lower one of the double sign. Expanding
Gαβ (k) by the plane wave spinor and taking the residue at the quasiparticle pole, finally
we obtain a4×4 hermitian matrix equation at eachk,




e−E+
k −m1 −σ1 −π −δ
−σ1 e+E−k − m̃1 −δ̃ −π̃
−π −δ̃ e+E+

k − m̃2 −σ2
−δ −π̃ −σ2 e−E−k −m2







A
B
C
D


 = 0, (7)

with E±k = Ek±µI/2. Here the (real) Bogoliubov amplitudes are defined as

A = 〈0̃|adη†|0̃〉, B = 〈0̃|b†
−dη†|0̃〉, C =−i〈0̃|b†

−uη†|0̃〉, D =−i〈0̃|auη†|0̃〉, (8)

with η† denoting the creation operator of the eigen quasiparticle. This type of equation
appears also in the cases of the relativistic 1 flavor pairing including the Dirac sea [15]
and the non-relativistic 2 flavor pairing [16]. In Eq.(7) 10 kinds of mass and gap
functions are independent. Among them, the momentum dependent gap for the quark
is

π(k) =−iŪ(k)(−G〈π〉iγ5 +
√

2Σ+)V(k), (9)

here the first term stems from the momentum independent pion condensation〈π〉 of
the meson system, and the second one from the non-local Fock selfenergy that is a
function ofA(k′)–D(k′). Therefore the equations for all momenta are coupled. Solving
them selfconsistently determines all the physical quantities: The Bogoliubov amplitudes,
quasiparticle energies, and the mass and gap functions at eachµI. Then the pair wave
functions and the coherence length are calculated from them.

Now we proceed to numerical calculations. Parameters used are the current quark
massmq = 0.0055 GeV, the momentum cutoffΛ = 0.63 GeV, the pion decay constant
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FIGURE 1. Momentum dependence of various quantities atµI = -0.5 GeV: (a) the quasiparticle
energies, (b) the Bogoliubov amplitudes, (c) the pair wave function, and (d) the gap function. Note that
(b) – (d) are associated with the third (from the bottom) solution in (a).

fπ = 0.093 GeV, the pion massmπ = 0.138 GeV, the parameter in the linear sigma model
λ = 4.5, and the quark–meson couplingG = 3.3. Calculations are done forµI < 0.

Figure 1 shows the results at|µI| = 0.5 GeVÀmπ . Figure 1 (a) is the quasiparticle
energy diagram as a function of the relative momentumk (dispersion relation). Its
unperturbed structure is quite simple: The positive and negative energyu (d) quark
levels with±Ek are shifted upward (downward) by|µI|/2. Then, the negative energy
u, that is the hole state of̄u, and the positive energyd interact around the Fermi surface.
This means thedū pairing. Hereafter we name these quasiparticle (hole) levels the first,
second, third and fourth, from the bottom. In the following discussion, we concentrate
on the third level, the lower quasiparticle. In the case of this lower quasiparticle, the
selfconsistently determined solution consists only ofA andC corresponding tou andv in
the usual notation, that is, other amplitudesB andD are zero at eachk. Figure 1 (b) shows
the Bogoliubov amplitudesA andC. Aside from the bump aroundk = 0 mentioned
below, the hole character changes gradually to the particle character around the Fermi
surface as the usual Cooper pairing. This leads to the peak in the pair wave function
φ(k) = A(k)C(k) shown in Fig. 1 (c). The bump aroundk = 0 is a novel feature of the
present case; this is brought about by the mesonic contribution〈π〉 to the gap function
π(k) (see Eq.(9)) as shown in Fig. 1 (d). In this gap function, the mesonic and the
Cooper pair components are comparable around the Fermi surface, whereas the former
is dominant aroundk = 0 because of thek dependence∝ Mq/Ek.

Figure 2 shows theµI dependence of the pair wave function. Figure 2 (a) shows the
pair wave functions at severalµIs as functions of the momentum. This shows that the
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FIGURE 2. Isospin chemical potential dependence of the pair wave function: (a) in thek space, and (b)
in ther space.

peak due to the Cooper pairing can not be seen at low|µI|. Actually, q andq̄ are bound
to each other for|µI| < 2Mq. Thus, we can conclude that the pionic condensation has
a mixed character: Purely bosonic just after the appearance of the condensation, then
the Cooper pairing gradually grows as|µI| increases with retaining significant bosonic
component. To look into the spatial structure of Cooper pairs more closely, we Fourier
transformφ(k). The results for severalµIs are shown in Fig. 2 (b) as functions of
the relative distance. Obviously those for higher|µI| wave till longer distance. The
coherence length, indicating the spatial extension of theq-q̄ pairs, increases from 0.7
fm at |µI|= 0.14 GeV to 3.2 fm at|µI|= 0.8 GeV.

To summarize, we have studied the momentum dependence of the pionic gap function
π(k) by adopting the linear sigma model as an inter-quark interaction at finite isospin
chemical potential and zero temperature. The present framework is useful for the cases
that can not be represented as a usual gap equation, including those in which there are
more than one gap. The character of the condensation is bosonic at low|µI|, then the
Cooper pairing gradually grows as|µI| increases.
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