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We test the reliability of the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model, comparing

the model result with the lattice data at nonzero imaginary chemical potential. The PNJL model with the

vector-type four-quark and scalar-type eight-quark interactions reproduces the lattice data on the

pseudocritical temperatures of the deconfinement and chiral phase transitions. The QCD phase diagram

in the real chemical potential region is predicted by the PNJL model. The critical end point survives, even

if the vector-type four-quark interaction is taken into account.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is a remarkable the-
ory. It is renormalizable and essentially parameter free.
QCD accounts for the rich phenomenology of hadronic and
nuclear physics. Thermodynamics of QCD is also well
defined. Nevertheless, it is not well known because of its
nonperturbative nature. In particular, the QCD phase dia-
gram is essential for understanding not only natural phe-
nomena such as compact stars and the early universe but
also laboratory experiments such as relativistic heavy-ion
collisions.

Unfortunately, quantitative calculations of the phase
diagram from first-principle lattice QCD (LQCD) have
the well-known sign problem when the chemical potential
(�) is real; for example, see Ref. [1] and references therein.
So far, several approaches have been proposed to circum-
vent the difficulty; for example, the reweighting method
[2], the Taylor-expansion method [3], and the analytic
continuation to real chemical potential (�R) from imagi-
nary chemical potential (�I) [4–8]. However, those are still
far from perfection.

As an approach complementary to first-principle lattice
QCD, we can consider effective models such as the
Nambu–Jona-Lasinio (NJL) model [9–17] and the
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [18–35]. The NJL model describes the chiral sym-
metry breaking, but not the confinement mechanism. The
PNJLmodel is designed [20] to make it possible to treat the
Polyakov loop as well as the chiral symmetry breaking.

In the NJL-type models, the input parameters are deter-
mined at � ¼ 0 and T � 0, where T is temperature. It is
then highly nontrivial whether the models predict properly

dynamics of QCD at finite �R. This should be tested from
QCD. Fortunately, this is possible in the �I region, since
lattice QCD has no sign problem there. The canonical
partition function ZCðnÞ with real quark number n is the
Fourier transform of the grand-canonical one ZGCð�Þ with
� ¼ �I=T [36]:

ZCðnÞ ¼ 1

2�

Z �

��
d�e�in�ZGCð�Þ: (1)

Thus, the thermodynamic potential of QCD, �QCDð�Þ ¼
�T lnðZGCð�ÞÞ, at finite � includes all dynamics at real n
and hence at finite �R . Therefore, the reliability of effec-
tive models at finite �R can be tested in the �I region.
Roberge and Weiss found [36] that QCD has a period-

icity �QCDð�Þ ¼ �QCDð�þ 2�k=3Þ, showing that

�QCDð�þ 2�k=3Þ is transformed into �QCDð�Þ by the Z3

transformation with integer k. This means that QCD is
invariant under a combination of the Z3 transformation
and a parameter transformation � ! �þ 2k�=3 [34–36],

q ! Uq; A� ! UA�U
�1 � i=gð@�UÞU�1;

� ! �þ 2�k=3;
(2)

where Uðx; �Þ are elements of SUð3Þ with Uðx; � ¼
1=TÞ ¼ expð�2i�k=3ÞUðx; 0Þ and q is the quark field.
We call this combination the extended Z3 transformation.
Thus, �QCDð�Þ has the extended Z3 symmetry, and hence

quantities invariant under the extended Z3 transformation
have the Roberge-Weiss (RW) periodicity [34–36] . At the
present stage, the PNJL model is only a realistic effective
model that possesses both the extended Z3 symmetry and
chiral symmetry [34,35]. This property makes it possible to
compare the PNJL model with lattice QCD quantitatively
in the �I region. If the PNJL model succeeds in reproduc-
ing the lattice data, we may think that the PNJL model will
predict, with high reliability, the QCD phase structure in
the �R region.
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The extended Z3 symmetry in QCD is a remnant of the
Z3 symmetry, namely the confinement mechanism, in the
pure gauge system. The extended Z3 symmetry appears as
the RW periodicity in the �I region and implicitly affects
dynamics in the �R region. Actually, the mechanism
largely shifts the critical end point [10] toward higher T
and lower � than the NJL model predicts [21,25,31]. In
contrast, the vector-type four-quark interaction Gvð �q��qÞ2
largely moves the critical end point in the opposite direc-
tion [14,16,21,31], if it is newly added to the NJL and
PNJL models. Thus, it is essential to determine the strength
of the coupling Gv of the vector-type interaction, although
the interaction is often ignored in the NJL and PNJL
calculations.

In the relativistic meson-nucleon theory [37], the repul-
sive force mediated by vector mesons is essential to ac-
count for the saturation property of nuclear matter. Using
the auxiliary field method, one can convert quark-quark
interactions to meson-quark interactions; for example, see
Refs. [17,38,39] and references therein. In the hadron
phase, quarks have a large effective mass as a result of
spontaneous chiral symmetry breaking, and then nucleons
can be considered to be formed by such three heavy quarks,
i.e. three constituent quarks. It is then natural to think that
there exists a correspondence between the meson-nucleon
interactions and the quark-quark interactions. In this sense,
it is very likely that the vector-type four-quark interaction
is not negligible and even significant, in particular, at a
finite quark-density region corresponding to the nuclear
saturation density. In the previous work [35], we have
proposed that the strength of Gv can be determined from
lattice data on the chiral phase transition in the �I region.

In this paper, we consider two-flavor QCD and show the
reliability of the PNJL model, quantitatively comparing the
model result with lattice data in the �I region. The model
parameters except Gv are fixed by the measured pion mass
and decay constant at � ¼ T ¼ 0 and lattice data [40–42]
at T > 0 and � ¼ 0. The PNJL calculation with no vector-
type interaction well reproduces lattice data [4,8] on the
pseudocritical temperature Tcð	Þ of the deconfinement
phase transition, but not on the pseudocritical temperature
Tcð
Þ of the chiral phase transition near � ¼ �=3. The
strength of Gv is fitted so as to reproduce the latter data.
The primary result of the lattice simulations is that Tcð	Þ
coincides with Tcð
Þ, within numerical errors, in the entire
region of � [4,8]. The PNJL model with the vector-type
interaction can reproduce this property. Finally, we quan-
titatively predict the phase diagram in the �R region by
using the PNJL model with the parameter set justified in
the �I region. These sorts of model predictions are quite
important before doing heavy lattice calculations with
large lattice size in the �I region.

In Sec. II, the PNJL model is explained simply. In
Sec. III, we test the PNJL model in the �I region and
determine the strength of Gv. Finally, we predict the phase

diagram in the �R region. Section IV is devoted to a
summary.

II. PNJL MODEL

The two-flavor PNJL Lagrangian is

L ¼ �qði��D
� �m0ÞqþGs½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�

�Uð	½A�; 	½A��; TÞ; (3)

where q denotes the two-flavor quark field, m0 does the
current quark mass, andD� ¼ @� þ iA� � i���

0 . The field

A� is defined as A� ¼ ��
0gA

0
a
�a

2 with the gauge field A�
a, the

Gell-Mann matrix �a, and the gauge coupling g. In the NJL
sector, Gs denotes the coupling constant of the scalar-type
four-quark interaction. Later, we will add the vector-type
four-quark interaction [10,14,16,35] and the scalar-type
eight-quark interaction [15,16,34] to the PNJL
Lagrangian. The Polyakov potential U, defined in (10),
is a function of the Polyakov loop 	 and its Hermitian
conjugate 	�,

	 ¼ 1

Nc

TrL; 	� ¼ 1

Nc

TrLy; (4)

with

LðxÞ ¼ P exp

�
i
Z �

0
d�A4ðx; �Þ

�
; (5)

where P is the path ordering and A4 ¼ iA0. In the chiral
limit (m0 ¼ 0), the Lagrangian density has the exact
SUðNfÞL � SUðNfÞR �Uð1Þv � SUð3Þc symmetry.

The temporal component of the gauge field is diagonal
in the flavor space, because the color and the flavor space
are completely separated out in the present case. In the
Polyakov gauge, L can be written in a diagonal form in the
color space [20]:

L ¼ ei�ð
3�3þ
8�8Þ ¼ diagðei�
a; ei�
b; ei�
cÞ; (6)

where 
a ¼ 
3 þ
8=
ffiffiffi
3

p
, 
b ¼ �
3 þ
8=

ffiffiffi
3

p
, and


c ¼ �ð
a þ
bÞ ¼ �2
8=
ffiffiffi
3

p
. The Polyakov loop �

is an exact order parameter of the spontaneous Z3 symme-
try breaking in the pure gauge theory. Although the Z3

symmetry is not an exact one in the system with dynamical
quarks, it still seems to be a good indicator of the decon-
finement phase transition. Therefore, we use 	 to define
the deconfinement phase transition.
Making the mean field approximation and performing

the path integral over quark field, one can obtain the
thermodynamic potential � (per unit volume),
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�¼�2Nf

Z d3p

ð2�Þ3
�
3EðpÞ

þ 1

�
ln½1þ 3ð	þ	�e��E�ðpÞÞe��E�ðpÞ þ e�3�E�ðpÞ�

þ 1

�
ln½1þ 3ð	� þ	e��EþðpÞÞe��EþðpÞ þ e�3�EþðpÞ�

�

þUMþU; (7)

where 
 ¼ h �qqi, �s ¼ �2Gs
, M ¼ m0 þ �s, UM ¼
Gs


2, EðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, and E�ðpÞ ¼ EðpÞ �� ¼

EðpÞ � i�=�. In (7), only the first term of the right-hand
side diverges. It is then regularized by the three-
dimensional momentum cutoff � [20,24]. We use U of
Ref. [25] that is fitted to a lattice QCD simulation in the
pure gauge theory at finite T [43,44]:

U ¼ T4

�
�aðTÞ

2
	�	þ bðTÞ

� lnð1� 6		� þ 4ð	3 þ	�3Þ � 3ð		�Þ2Þ
�
; (8)

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
;

(9)

where parameters are summarized in Table I. The
Polyakov potential yields a first-order deconfinement
phase transition at T ¼ T0 in the pure gauge theory. The
original value of T0 is 270 MeV evaluated by the pure
gauge lattice QCD calculation. However, the PNJL model
with this value of T0 yields a somewhat larger value of the
transition temperature at zero chemical potential than the
full LQCD simulation [40–42] predicts. Therefore, we
rescale T0 to 212 MeV; the detail will be shown in
Sec. III A.

The variables X ¼ 	, 	�, and 
 satisfy the stationary
conditions,

@�=@X ¼ 0: (10)

The solutions of the stationary conditions do not give the
global minimum � necessarily. There is a possibility that
they yield a local minimum or even a maximum. We then
have checked that the solutions yield the global minimum
when the solutions Xð�Þ are inserted into (7).

The thermodynamic potential � of Eq. (7) is not invari-
ant under the Z3 transformation,

	 ð�Þ ! 	ð�Þe�i2�k=3; 	ð�Þ� ! 	ð�Þ�ei2�k=3; (11)

althoughU of (8) is invariant. Instead of the Z3 symmetry,
however, � is invariant under the extended Z3 transforma-
tion,

e�i� ! e�i�e�ið2�k=3Þ; 	ð�Þ ! 	ð�Þe�ið2�k=3Þ;

	ð�Þ� ! 	ð�Þ�eið2�k=3Þ:
(12)

This is easily understood as follows. It is convenient to
introduce the modified Polyakov loop � � ei�	 and
�� � e�i�	� invariant under the transformation (12).
The extended Z3 transformation is then rewritten into

e�i� ! e�i�e�ið2�k=3Þ; �ð�Þ ! �ð�Þ;
�ð�Þ� ! �ð�Þ�;

(13)

and � is also into

� ¼ �2Nf

Z d3p

ð2�Þ3
�
3EðpÞ þ 1

�
ln½1þ 3�e��EðpÞ

þ 3��e�2�EðpÞe��B þ e�3�EðpÞe��B�
þ 1

�
ln½1þ 3��e��EðpÞ þ 3�e�2�EðpÞe���B

þ e�3�EðpÞe���B�
�
þUM þU; (14)

where ��B ¼ 3�� ¼ 3i�. Obviously, � is invariant
under the extended Z3 transformation (13), since it is a
function of only extended Z3 invariant quantities, e

3i� and
~Xð¼ �;��; 
Þ. The explicit � dependence appears only
through the factor e3i� in (14). Hence, the stationary con-
ditions (10) show that ~X ¼ ~Xðe3i�Þ. Inserting the solutions
back to (14), one can see that � ¼ �ðe3i�Þ. Thus, ~X and �
have the RW periodicity,

~X

�
�þ 2�k

3

�
¼ ~Xð�Þ; and �

�
�þ 2�k

3

�
¼ �ð�Þ;

(15)

while the Polyakov loop	 and its Hermitian conjugate	�
have the properties

	

�
�þ 2�k

3

�
¼ e�i2�k=3	ð�Þ;

	

�
�þ 2�k

3

�� ¼ ei2�k=3	ð�Þ�:
(16)

III. NUMERICAL RESULTS

A. Thermal system with no chemical potential

First, we consider the thermal system with no chemical
potential to determine the parameters,m0,Gs,�, and T0, of
the PNJL model. In the lattice calculations [40–42], the
pseudocritical temperature Tcð
Þ of the crossover chiral
phase transition coincides with that Tcð	Þ of the crossover
deconfinement one within 10% error: Tcð
Þ � Tcð	Þ �
173� 8 MeV [41].

TABLE I. Summary of the parameter set in the Polyakov
sector used in Ref. [25]. All parameters are dimensionless.

a0 a1 a2 b3

3.51 �2:47 15.2 �1:75
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The parameter set, � ¼ 631:5 MeV, Gs ¼
5:498 ½GeV�2�, and m0 ¼ 5:5 MeV, can reproduce the
pion decay constant f� ¼ 93:3 MeV and the pion mass
M� ¼ 138 MeV at T ¼ � ¼ 0 [16], and keeps a good
reproduction also at finite T [25]. We then adopt these
values for �, Gs , and m0. We adjust T0 so that the PNJL
calculation can reproduce the lattice result Tcð	Þ ¼
173 MeV; the value is T0 ¼ 212 MeV. The parameter set
thus determined is shown as set A in Table II.

Figure 1 shows the chiral condensate 
 normalized by

0 ¼ 
jT¼0;�¼0 and the absolute value of the Polyakov

loop 	 as a function of T=Tc. In this paper Tc is always
taken to be 173 MeV. The thin curves represent the PNJL
results of parameter set A, where 
0 ¼ �0:0302 ½GeV3�
in this case. Lattice QCD data [40–42] are also plotted by
cross symbols with a 10% error bar;
 and j	jmeasured as
a function of T=Tc in Refs. [40–42] have only small errors,
but we have added 10% error that the lattice calculation
[41] has in determining Tc . For j	j the PNJL result (thin
solid curve) reasonably agrees with the lattice one (� ).
For 
, however, the PNJL result (thin dashed curve) con-
siderably overshoots the lattice data (þ ).

Figure 2 represents results of the PNJL calculations for
chiral and Polyakov-loop susceptibilities, �
 and �	 [21].
Peak positions of �
 and �	 show Tcð
Þ and Tcð	Þ,
respectively. The PNJL results (thin curves) of parameter
set A give Tcð
Þ=Tc ¼ 1:25 and Tcð	Þ=Tc ¼ 1, while the
lattice simulations yield Tcð
Þ=Tc ¼ 1� 0:05 and
Tcð	Þ=Tc ¼ 1� 0:05. The PNJL results are consistent
with the lattice ones for Tcð	Þ, but not for Tcð
Þ.
Now we introduce the scalar-type eight-quark interac-

tion [16],

Gs8½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�2; (17)

since the difference Tcð
Þ � Tcð	Þ is reduced by the in-
teraction [34].
Since f� and M� calculated with PNJL depend on the

strength of Gs8, for each value of Gs8 the strength of Gs is
readjusted so as to reproduce the measured values f� ¼
93:3 MeV and M� ¼ 138 MeV. As Gs8 increases from
zero, Tcð
Þ calculated with PNJL decreases toward Tc ¼
173 MeV. WhenGs8 ¼ 452:12 GeV�8, the ratio Tcð
Þ=Tc

becomes 1.05 and, hence, is consistent with the corre-
sponding lattice result within 10% error. We adopt this
strength. This parameter set is shown as set B in Table II.
As shown in Fig. 1, the PNJL results (thick curves) of
parameter set B well reproduce the lattice results for both
the chiral condensate and the Polyakov loop.

B. Thermal system with imaginary chemical potential

In this subsection, we consider the thermal system with
finite imaginary chemical potential and compare the PNJL
result with the lattice data [4,8] in which the lattice size is
83 � 4 and the two-flavor Kogut-Susskind and Wilson
fermions are considered.

TABLE II. Summary of the parameter sets in the PNJL calcu-
lations. The parameters �, m0, and T0 are common among the
three sets; � ¼ 631:5 MeV, m0 ¼ 5:5 MeV, and T0 ¼
212 MeV.

Set Gs Gs8 Gv

A 5:498 GeV�2 0 0

B 4:673 GeV�2 452:12 GeV�8 0

C 4:673 GeV�2 452:12 GeV�8 4:673 GeV�2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2

σ ,
 |Φ

|

T/Tc

A(0,0)
B(Gs8,0)

FIG. 1 (color online). Chiral condensate 
 normalized by

ðT ¼ 0; � ¼ 0Þ and the absolute value of the Polyakov loop
	. The thick (thin) curves represent the PNJL result of parameter
set B (A) with (without) the scalar-type eight-quark interaction;

 (j	j) is denoted by the dashed (solid) curves. Lattice data (þ )
on 
 are taken from Ref. [40] and those (� ) on j	j are from
Ref. [42]. The lattice data are plotted with a 10% error bar, since
lattice calculations have 10% error in determining Tc [41].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5  1  1.5  2
 0

 10

 20

 30

 40

 50

χ Φ χ σ

T/Tc

χσ

χΦ

A(0,0)
B(Gs8,0)

FIG. 2 (color online). T dependence of chiral and Polyakov-
loop susceptibilities, �
 (right scale) and �	 (left scale). The
thick (thin) curves represent the PNJL result of parameter set B
(A) with (without) the scalar-type eight-quark interaction; �


(�	) is denoted by the dashed (solid) curves. The region between
two vertical dotted lines T ¼ ð1� 0:05ÞTc is the prediction of
lattice calculations [41].
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First, we analyze the deconfinement phase transition.
Since the eight-quark interaction hardly changes the
Polyakov loop, we do the PNJL calculation with the pa-
rameter set A. Figure 3 presents T dependence of the
Polyakov-loop susceptibility �	 in three cases of � ¼ 0,
0.56, and 0.96. For each �, the PNJL result (curve) repro-
duces the corresponding lattice result (crosses) in its peak
position. Thus, the PNJL results are consistent with the
lattice ones for the pseudocritical temperature of the cross-
over deconfinement phase transition.
Figure 4 presents the phase diagram of the deconfine-

ment phase transition in the �-T plane, where � is divided
by �=3 and T is normalized by Tc ¼ 173 MeV. Lattice
data [8] measured as a function of T=Tc have only small
errors, as shown by thick error bars in Fig. 4. This is an
error bar in the case that lattice calculations have no error
in Tc. However, the lattice calculation [41] has about 10%
error in determining Tc, as mentioned in Sec. III A. This
10% error should be added to the original small error; this
10% error will be shown later in Fig. 6. The PNJL result
(solid curve) of set A agrees with the lattice one (crosses)
within the error bars. The phase diagram has a periodicity
of 2�=3 in �. This is called the RW periodicity [36]. The
phase diagram is also � even, because so is �	. On the dot-
dashed line going up from an end point ð�RW; TRWÞ ¼
ð�=3; 1:09TcÞ, the quark-number density n and the phase

 of the Polyakov loop are discontinuous in the PNJL
calculations [34,35]. This is called the RW phase transition
line. The lattice data [4,8] on 
 are also discontinuous on
the line, as shown later in Fig. 7. Thus, the PNJL result is
consistent with the lattice results [4,8] also for the location
of the RW phase transition line.
The lattice simulations [4,8] point out that Tcð
Þ agrees

with Tcð	Þwithin numerical errors in the entire region 0 	
� 	 2�=3. We then take the case of � ¼ �=3 to consider
this point. It is predicted by the lattice simulations that
Tcð
Þ and Tcð	Þ are located in the region between two

 0

 5

 10

 15

 20

 0.95  1  1.05  1.1  1.15
 0

 0.4

 0.8

 1.2

 1.6

χ Φ
L

Q
C

D

χ Φ
PN

JL

T/Tc

θ=0 0.56

0.96

FIG. 3 (color online). T dependence of the Polyakov-loop
susceptibilities in three cases of � ¼ 0, 0.56, and 0.96. Curves
represent the PNJL results of set A (right scale). Lattice data
shown by crosses (left scale) are taken from Ref. [8].

 0.9

 1

 1.1

 1.2

 0  1  2  3  4

T
/T

c

θ/(π/3)

FIG. 4. Phase diagram on the �-T plane. The solid curve
represents the deconfinement phase transition, while the dot-
dashed lines do the RW phase transition predicted by the PNJL
calculation with set A. Lattice data are taken from Ref. [8].

 0
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 0.4

 0.6

 0.8

 1

 0.5  1  1.5  2

σ ,
 |Φ

|

T/Tc

(a) A(0,0)
B(Gs8,0)
C(Gs8,Gv)
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 0.5  1  1.5  2
 0

 10

 20

 30

 40

 50

χ Φ χ σ

T/Tc

χσ

χΦ

(b) A(0,0)
B(Gs8,0)
C(Gs8,Gv)

FIG. 5 (color online). T dependence of (a) the normalized chiral condensate and the absolute value of the Polyakov loop and (b) the
susceptibilities �
 (right scale) and �	 (left scale) at � ¼ �=3. In panel (a), 
 (j	j) is denoted by the dashed (solid) curves. In panel
(b), �
 (�	) is denoted by the dashed (solid) curves. The PNJL calculations are done with three parameter sets of A, B, and C. The
region between two vertical dotted lines T ¼ ð1:1� 0:05ÞTc is the prediction of TRW by the lattice calculations [4,8].
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vertical dotted lines of Fig. 5. Panel (a) shows 
 and j	j as
a function of T=Tc and panel (b) does �
 and �	 as a
function of T=Tc. The thin (thick) curves represent results
of the PNJL calculations with set A (B). The eight-quark
interaction hardly shifts the peak position of �	, i.e. Tcð	Þ,
from the value 1:09Tc. The peak position is consistent with
the lattice result shown by the region between two vertical
dotted lines. In contrast, the eight-quark interaction largely
shifts the peak position of �
, i.e. Tcð
Þ, from 1:53Tc to
1:24Tc, but the shifted value still deviates from Tcð	Þ ¼
ð1:1� 0:05ÞTc, that is, the lattice data near � ¼ �=3 [4,8]
shown by the region between two vertical dotted lines.

In order to solve this problem, we introduce the vector-
type four-quark interaction

�Gvð �q��qÞ2 (18)

and add it to the PNJL Lagrangian L; see Ref. [35] for the
detail of this formulation. As mentioned in Ref. [35], the
phase structure in the real chemical potential region is
quite sensitive to the strength of the coupling Gv. It is
then important to determine the strength, but it has not
been done yet. Since the vector-type interaction does not
change the pion mass and the pion decay constant at T ¼
� ¼ 0 and the chiral condensate and the Polyakov loop at
T � 0 and � ¼ 0, we can simply add the interaction to set
B. As Gv increases from zero, Tcð
Þ goes down toward
Tcð	Þ, while Tcð	Þ moves little. When Gv ¼
4:673 GeV�2, Tcð
Þ gets into the region between the
vertical dotted lines. We adopt this strength of Gv. This
set is shown as set C in Table II.
When this value of Gv is taken, the omega meson mass

at � ¼ 0 and T ¼ 0 estimated by the Bethe-Salpeter for-
malism [45] is about 695 MeV and then 11% smaller than
the measured value 782 MeV. This difference may be
related to the fact that the omega meson mass is larger
than the cutoff � ¼ 631:5 MeV we use. At present, thus,
the calculation of the vector meson mass is beyond our
scope, but this problem is interesting as a future work.
Figure 6 shows the phase diagram of the chiral phase

transition determined by Tcð
Þ. Thin, thick, and bold
curves are results of the PNJL calculations with sets A,
B, and C, respectively. In the entire region 0 	 � 	 2�=3,
the eight-quark interaction moves Tcð
Þ down from the
thin dashed curve (set A) to the thick one (set B). However,
the thick dashed curve still overshoots the lattice result
(symbols) with 10% error near � ¼ �=3. The vector-type
interaction makes the thick dashed curve go down to the
bold one (set C) that is consistent with the lattice result [8].
Thus, the PNJL calculations with set C can reproduce the
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FIG. 6 (color online). Phase diagrams of the chiral phase
transition in the imaginary chemical potential region calculated
with three parameter sets are presented by dashed curves; thin,
thick, and bold ones are results of the PNJL calculations with set
A, B, and C, respectively. Lattice data [8] are shown with 10%
error that Tc has [41]. The deconfinement phase transition
curve (bold solid curve) and the RW phase transition lines
(bold dot-dashed lines) calculated with set C are also shown
for comparison.
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FIG. 7 (color online). Phase
 of the Polyakov loop as a function of (a) � and (b) T. Lattice data [4,8] are plotted by symbols. Curves
represent results of PNJL calculations with set A. In panel (b), four cases (solid, dashed, dotted, and dot-dashed) from top to bottom
represent results of � ¼ 0, 0.8, �=3, and 1.2, respectively. The dotted line terminates at T ¼ TRW ¼ 1:09Tc, since 
 is singular at
T > TRW in the case of � ¼ �=3.
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lattice result [4,8] that Tcð
Þ coincides with Tcð	Þ within
numerical errors in the entire region 0 	 � 	 2�=3.

Figure 7(a) shows � dependence of the phase
 of 	 for
four cases of T=Tc ¼ 0:97, 1.01, 1.04, and 1.10. The PNJL
results (curves) well reproduce the lattice data [4,8] (sym-
bols). It is found from both results that 
 is continuous at
� ¼ �=3 in the low-T side T 	 TRW ¼ 1:09Tc, but it is
discontinuous at � ¼ �=3 in the high-T side T > TRW.
Hence, the RW phase transition takes place at T > TRW ¼
1:09Tc and � ¼ �=3.

Figure 7(b) shows T dependence of 
 for four cases of
� ¼ 0, 0.8, �=3, and 1.2. The PNJL results (curves) well
reproduce the lattice data [4,8] (symbols). For � < �=3 the
phase 
 tends to zero as T increases, while for � > �=3 it
does to �2�=3 as T increases. When � ¼ �=3, the RW
phase transition takes place at T > TRW ¼ 1:09Tc and then
the phase 
 is singular there, so that the dotted line
terminates at T ¼ TRW. In the high-T limit, the region
(I) ��=3< �< �=3 has 
 ¼ 0 and the region
(II) �=3< �< � does 
 ¼ �2�=3. Thus, the region
(II) is a Z3 image of the region (I), and the region (III) �<
�< 5�=3 is another Z3 image of the region (I).

C. Thermal system with real chemical potential

In this subsection, we predict the phase diagram in
the real � region by using the PNJL model. Figures 8(a)
and 8(b) represent the phase diagrams in the �2-T plane
predicted by the PNJL calculations with parameter sets A
and B, respectively. On the solid curve between points E
and D, both the first-order chiral and deconfinement phase
transitions take place simultaneously, and hence point E is
the critical end point of these phase transitions. The dot-
dashed curve moving up from point I represents the RW
phase transition of first order, and then point I is the critical
end point of the RW phase transition. The dashed curve
between points H and E means the crossover chiral phase
transition, while the long-dashed curve between points I

and E does the crossover deconfinement phase transition.
Point F (G) is a crossing point between the dashed (long-
dashed) curve and the � ¼ 0 line. Cross symbols with
error bars indicate LQCD data [4,8]. The PNJL results
with parameter sets A and B are not consistent with the
LQCD data in the �2 < 0 region. The difference between
panels (a) and (b) comes from the effect of the scalar-type
eight-quark interaction.
Figure 9 represents the result of the PNJL calculation

with parameter set C. This figure is most reliable, since the
PNJL result is consistent with the LQCD one [4,8] in the
�2 < 0 region. Comparing Figs. 8 and 9, one can see that
the scalar-type eight-quark interaction and the vector-type
four-quark interaction give sizable effects on the phase
structure. In particular for the critical end point E, the
eight-quark interaction shifts point E to larger T and
smaller �, and the vector-type interaction moves it in the
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FIG. 8 (color online). Phase diagram in the real and imaginary chemical potential region. Panels (a) and (b) are calculated with the
parameter sets A and B, respectively. Cross symbols with error bars indicate the lattice data taken from Ref. [8]. Points D–I are
explained in the text.
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The meaning of the curves and symbols is the same as in Fig. 8,
except for the dotted curve starting from the origin, which is
explained in the text.

DETERMINATION OF QCD PHASE DIAGRAM FROM THE . . . PHYSICAL REVIEW D 79, 096001 (2009)

096001-7



opposite direction. Positions of points D–I are summarized
in Table III.

Recently, progress was made by Ejiri [46] in LQCD
simulations. He succeeded in calculating the canonical
partition function with reasonable accuracy, using the
saddle-point and the Taylor-expansion method allowed
for low quark-number density. He constructed the effective
potential as a function of the quark-number density and
showed that the first-order phase transitions appear in the
region�=T > 2:5. This indicates that the position ð�E; TEÞ
of point E is located on a curve �E=TE 
 2:5. The pre-
diction curve �E=TE ¼ 2:5 is presented by the dotted
curve in Fig. 9. The position of point E in the case of
parameter set C is consistent with the LQCD prediction.

IV. SUMMARY

We have tested the reliability of the PNJL model, com-
paring the model result with lattice data in the imaginary
chemical potential (�I ¼ T�) region. In this test, the
model parameters except Gv are adjusted so as to repro-
duce the measured pion mass and decay constant at T ¼
� ¼ 0 and lattice data [40–42] at T > 0 and� ¼ 0. In this
step the eight-quark interaction plays an important role to
make Tcð
Þ closer to Tcð	Þ as discussed in our previous
work [34]. With the aid of this, the PNJL calculation with
the eight-quark interaction but without the vector-type
interaction well reproduces the lattice data [4,8] at finite

� on 	 and Tcð	Þ, but not on Tcð
Þ particularly near � ¼
�=3 fully. The strength of Gv is then fitted so as to
reproduce the data on Tcð
Þ near � ¼ �=3. The primary
result of the lattice simulations is that Tcð	Þ coincides with
Tcð
Þ, within numerical errors, in the entire region of �
[4,8]. The PNJL model with the eight-quark and vector-
type interactions can reproduce this property. Therefore,
we can expect that the PNJL model with this parameter set
is reliable also in the �R region.
Finally, we quantitatively predict the phase diagram in

the�R region by using the PNJL model with the parameter
set mentioned above. The critical end point does not dis-
appear in virtue of the eight-quark interaction, even if the
vector-type interaction is taken into account. This is the
primary result of the present work. The lattice calculations
at nonzero �I have small lattice size (83 � 4) [4,8].
Therefore, it is highly expected that lattice simulations
with larger size will be done in the �I region.
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