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Effects of the vector-type four-quark interaction on QCD phase structure are investigated in the

imaginary chemical potential (�) region, by using the Polyakov-loop extended Nambu–Jona-Lasinio

model with the extended Z3 symmetry. We clarify analytically the Roberge-Weiss periodicity and

symmetry properties of various quantities under the existence of a vector-type four-quark interaction.

In the imaginary � region, the chiral condensate and the quark-number density are sensitive to the

strength of the interaction. Based on this result, we propose a possibility to determine the strength of the

vector-type interaction, which largely affects QCD phase structure in the real � region, by comparing the

results of lattice simulations and effective model calculations in the imaginary � region.
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I. INTRODUCTION

The progress in computer power has made it feasible to
do realistic simulations in lattice QCD for finite tempera-
ture (T) system without quark chemical potential (�) [1].
As for �2 > 0, however, lattice QCD has the well-known
sign problem, and then the results are still far from perfec-
tion; for example, see Ref. [2] and references therein.
Several approaches have been proposed to solve the sign
problem. One of them is the use of an imaginary chemical
potential, since the fermionic determinant that appears in
the Euclidean partition function is real in that case; for
example, see Refs. [3–5], and references therein.

When physical quantities are available with lattice QCD
in the imaginary � region, in principle it is possible to
extrapolate them to real �, until there appears a disconti-
nuity. Actually, such an extrapolation was made for the
phase transition curve by assuming some analytic func-
tions for the curve [3,4]. This direct extrapolation may
work for small real�=T, but its accuracy is quite unknown
for large real �=T [6]. This problem may be circumvented
by the effective theory that can evaluate the partition
function in both the real and imaginary � regions and
reproduce the results of lattice QCD in the imaginary �
region, if such an effective theory is found.

In the region of imaginary chemical potential � ¼ iT�,
Roberge and Weiss (RW) found [7] that the partition
function Zð�Þ of SUðNÞ gauge theory is a periodic function
of � with a period 2�=N, showing that Zð�þ 2�k=NÞ is
reduced to Zð�Þ with the ZN transformation for any integer
k. The RW periodicity means that Zð�Þ is invariant under
the combination of the ZN transformation and another

transformation � ! �þ 2�k=N, that is, under the ex-
tended ZN transformation [6]

q!Uq; A�!UA�U
�1� i

g
ð@�UÞU�1; �!�þ2�k

N
;

(1)

where Uðx; �Þ are elements of SUðNÞ with the boundary
condition Uðx; �Þ ¼ expð�2i�k=NÞUðx; 0Þ, q is the fer-
mion field, A� is the gauge field, and � is the inverse of
temperature T. Quantities invariant under the extended ZN

transformation, such as the thermodynamic potential�ð�Þ
and the chiral condensate, keep the RW periodicity.
Meanwhile, the Polyakov loop � is not invariant under
the transformation (1), since it is transformed as � !
�expð�i2�k=NÞ. Such a noninvariant quantity does not
have the periodicity, but this problem can be solved by the
modified Polyakov loop defined later in Eq. (12) invariant
under the extended ZN transformation [6]. Roberge and
Weiss also showed with perturbation that in the high T
region d�ð�Þ=d� and �ð�Þ are discontinuous at � ¼
ð2kþ 1Þ�=N and also found with the strongly coupled
lattice theory that the discontinuities disappear in the low
T region. The first-order RW phase transition of
d�ð�Þ=d�, that is, the quark-number density n ¼
�d�=d� ¼ iðd�ð�Þ=d�Þ=T was observed in lattice
simulations [3–5].
The Nambu–Jona-Lasinio (NJL) model [8] is famous as

a model for understanding chiral symmetry breaking, but it
does not have the extended Z3 symmetry as well as the
confinement mechanism. In the previous work [6], we
pointed out that the Polyakov-loop extended NJL (PNJL)
model designed to have the confinement mechanism [9–
26] possesses the extended Z3 symmetry. Hence the ther-
modynamic potential�ð�Þ of the PNJL model has the RW
periodicity. Using the RW periodicity and the �-evenness
of �ð�Þ, �ð�Þ ¼ �ð��Þ, we also found that �-odd
(�-even) quantities such as n (�) have first-order
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(second-order) phase transitions on lines � ¼ ð2kþ 1Þ�=3
in the �-T plane. This result is consistent with the results of
lattice QCD and even more informative. Thus, the ex-
tended Z3 symmetry is essential. The extended Z3 sym-
metry of finite � QCD is an extension of the Z3 symmetry
of pure gauge QCD.

The confinement mechanism is a key to understand the
physical real � world. Actually, it is predicted that the
mechanism largely shifts the critical end point [27] toward
higher T and lower � than the NJL model predicts
[17,22,24]. In contrast, it is known [22,24,28,29] that the
vector-type four-quark interaction ð �q��qÞ2 largely moves

the critical end point in the opposite direction, if it is newly
added to the NJL and PNJL models. Thus, it is essential
from the phenomenological point of view to determine the
strength of the vector-type four-quark interaction.

So far, the vector-type interaction was often ignored in
the NJL and PNJL models. In the relativistic meson-
nucleon theory [30], meanwhile, the repulsive force medi-
ated by vector mesons is essential to account for the
saturation property of nuclear matter. Using the auxiliary
field method, one can convert quark-quark interactions to
meson-quark interactions; for example, see Refs. [31–33],
and references therein. In the hadron phase, furthermore,
quarks have a large effective mass as a result of sponta-
neous chiral symmetry breaking, and then nucleons can be
considered to be formed from three such heavy quarks, that
is, three constituent quarks. It is then natural to think that
there exists a correspondence between the meson-nucleon
interactions and the quark-quark interactions. In this point
of view, it is quite likely that the vector-type four-quark
interaction is not negligible and even significant, in par-
ticular, at the finite quark-density region corresponding to
the nuclear saturation density.

In this paper we investigate roles of the vector-type four-
quark interaction in the imaginary � region and show that
the chiral condensate � and the quark-number density n
are quantities sensitive to the strength of vector-type four-
quark interaction. We then propose to measure n as well as
� with lattice QCD. If the strength of vector-type four-
quark interaction is determined from the measured � and
n, the PNJL model with the interaction can predict the
phase diagram in the real � region with reasonable relia-
bility. The previous proof [6] on the RW periodicity and the
even/odd property of the extended Z3 invariant quantities
are not applicable to the case with vector-type four-quark
interaction. We then prove the properties in a way different
from the previous one [6].

In Sec. II, we present the PNJL model with the vector-
type four-quark interaction and derive the thermodynamic
potential invariant under the extended Z3 transformation.
For the case of imaginary � ¼ iT�, it is proven that the
extended Z3 invariant quantities exhibit the RW periodic-
ity. For both imaginary and real � cases, their even/odd
properties are determined. It is shown from the RW peri-

odicity and the even/odd properties that the RW phase
transition appearing in � ¼ ð2kþ 1Þ�=3 is a family of
first-order phase transitions in �-odd quantities and
second-order ones in �-even quantities. In Sec. III, we
show results of numerical calculations. Section IV is de-
voted to summary.

II. PNJL MODEL

A. Formulation

We consider the two-flavor PNJL model with the vector-
type four-quark interaction. The PNJL Lagrangian is

L ¼ �qði��D
� �m0ÞqþGs½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�

�Gvð �q��qÞ2 �Uð�½A�;�H½A�; TÞ; (2)

where q denotes the quark field, m0 does the current quark
mass, ~� stands for the isospin matrix, and D� ¼
@� � iA� � 	�

0� for the complex chemical potential � ¼
�R þ iT�. Parameters Gs and Gv represent the coupling
constants of the scalar- and vector-type four-quark inter-
actions ð �qqÞ2 and ð �q��qÞ2, respectively. The Polyakov

potential U, defined later in (9), is a function of the
Polyakov loop � and its Hermitian conjugate �H:

� ¼ 1

N
TrL; �H ¼ 1

N
TrLy; (3)

with

LðxÞ ¼ P exp

�
i
Z �

0
d�A4ðx; �Þ

�
; (4)

where A4 ¼ iA0, N ¼ 3, and P is the path ordering. In the
PNJL model, � and �H are treated as classical variables.
The temporal component A4 is diagonal in the flavor space,
because the color and the flavor space are completely
separated out in the present case. In the Polyakov gauge,
L can be written in a diagonal form in the color space [11]:

L ¼ ei�ð
3�3þ
8�8Þ ¼ diagðei�
a; ei�
b; ei�
cÞ; (5)

where 
a ¼ 
3 þ
8=
ffiffiffi
3

p
, 
b ¼ �
3 þ
8=

ffiffiffi
3

p
, and


c ¼ �ð
a þ
bÞ ¼ �2
8=
ffiffiffi
3

p
.

The Polyakov loop � is an exact order parameter of the
spontaneous Z3 symmetry breaking in the pure gauge
theory. Although the Z3 symmetry is not exact in the
system with dynamical quarks, it still seems to be a good
indicator of the deconfinement phase transition. Therefore,
we use � to define the deconfinement phase transition.
Making the mean field approximation (MFA), one can

get the Lagrangian density

LMFA ¼ �qði��D
� þ �0�v � ðm0 þ �sÞÞq�Uð�; nÞ

�Uð�;�H; TÞ; (6)

with
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� ¼ h �qqi; n ¼ h �q�0qi; �s ¼ �2Gs�;

�v ¼ �2Gvn; U ¼ Gs�
2 �Gvn

2;
(7)

and obtain the thermodynamic potential � by making the
path integral over the quark field:

�¼�2Nf

Z d3p

ð2�Þ3
�
3EðpÞþ 1

�
ln½1þ3ð�þ�He

��E�ðpÞÞ

�e��E�ðpÞ þe�3�E�ðpÞ�
þ 1

�
ln½1þ3ð�Hþ�e��EþðpÞÞe��EþðpÞ þe�3�EþðpÞ�

�

þUþU; (8)

with EðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, M ¼ m0 þ�s, and E�ðpÞ ¼

EðpÞ � ~�. Here the effective chemical potential ~� is de-
fined by ~� ¼ �R þ iT�� 2Gvn.

We use U of Ref. [14]:

U
T4

¼ �b2ðTÞ
2

�H�� b3
6
ð�H

3 þ�3Þ þ b4
4
ð�H�Þ2;

(9)

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (10)

Parameters of U are fitted to results of lattice simulations
in the pure gauge system with finite T [34,35]. In the pure
gauge system the parameter T0 agrees with the critical
temperature TD of the deconfinement phase transition.
Hence, as a reasonable choice, one can adjust T0 to TD ¼
270 MeV of the pure gauge lattice simulations. However,
the PNJL model with this value of T0 yields a somewhat
larger value of TD than �173 MeV predicted by the full
lattice QCD simulation [36–38]. In this paper, we then take
the rescaled value T0 ¼ 190 MeV that gives TD ¼
176 MeV in the PNJL calculation with � ¼ 0 [6].

As expected,� is invariant under the extended Z3 trans-
formation:

e�i� ! e�i�e�ið2�k=3Þ; �ð�Þ ! �ð�Þe�ið2�k=3Þ;

�Hð�Þ ! �Hð�Þeið2�k=3Þ:
(11)

Thus, the extended Z3 invariance of � is held, even if the
vector-type four-quark interaction is added to the PNJL
Lagrangian. In general, the symmetry persists, even if any
sort of multiquark interactions are added to the NJL sector.

As mentioned above, it is essential to introduce the
modified Polyakov loop

� � ei��; �H � e�i��H; (12)

invariant under the extended Z3 transformation (11).
The extended Z3 transformation is then rewritten into

e�i� ! e�i�e�ið2�k=3Þ; �ð�Þ ! �ð�Þ;
�Hð�Þ ! �Hð�Þ;

(13)

and � is also into

� ¼ �2Nf

Z d3p

ð2�Þ3
�
3EðpÞ þ 1

�
ln½1þ 3�e��EðpÞe��̂n

þ 3�He
�2�EðpÞe2��̂ne3i� þ e�3�EðpÞe3��̂ne3i��

þ 1

�
ln½1þ 3�He

��EðpÞe���̂n

þ 3�e�2�EðpÞe�2��̂ne�3i� þ e�3�EðpÞe�3��̂ne�3i��
�

þU� b2ðTÞT4

2
�H�� b3T

4

6
ð�H

3e3i� þ�3e�3i�Þ

þ b4T
4

4
ð�H�Þ2; (14)

where �̂n ¼ �R � 2Gvn and the factor expð�i3�Þ is also
invariant under the transformation (13). Variables X ¼ �,
�H, �, and n are determined from the stationary condi-
tions

@�=@X ¼ 0; (15)

by solving the equations for X. The thermodynamic poten-
tial �ð�Þ at each � is obtained by inserting the solutions
into (14). Such a calculation is possible for any complex�.

B. RW periodicity and even/odd property

We begin with the case of imaginary chemical potential
� ¼ iT�, that is, take �R ¼ 0 in (14). Equations (15)
depend on � only through the factor expð3i�Þ, so that the
solutions X are functions of the factor:

X ¼ Xðe3i�Þ: (16)

Since�ð�Þ is obtained by inserting the solutions X into (8),
�ð�Þ is also a function of expð3i�Þ. Hence, we get

�

�
�þ 2�k

3

�
¼ �ð�Þ; X

�
�þ 2�k

3

�
¼ Xð�Þ; (17)

which is consistent with the results in lattice QCD [4].
Thus, quantities invariant with respect to the extended Z3

transformation have the RW periodicity. It is found from
the proof shown above that the property is not influenced
by the presence/absence of the four-quark vector-type
interaction. This will be confirmed later through Fig. 1.
Next we discuss their more detailed symmetry proper-

ties. Taking the complex conjugate to (14), one can find
that the complex conjugate �� has the same form as the
original one �, if ��, n�, ��, and ��

H are replaced by �,
�n, �H, and �, respectively. This indicates that the solu-
tions X� of @��=@X� ¼ 0 are related to those X of
@�=@X ¼ 0 as

�� ¼ �; n� ¼ �n; �� ¼ �H; ��
H ¼ �:

(18)

The last two equations represent that �H is the complex
conjugate to �, so we simply use �� instead of �H in the
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case of imaginary �. Meanwhile, the first two equations
indicate

d��

dm0

¼ d�

dm0

;
d��

d�
¼ d�

d�
; (19)

because � ¼ d�=dm0 and n ¼ �d�=d� ¼ i�d�=d�.
The relations (19) are satisfied only when � is real.
Thus, � is real, so that n is pure imaginary and � is real.

As shown in (16), n is a function of cosð3�Þ and
i sinð3�Þ. This shows, together with the fact that n is pure
imaginary, that n is �-odd (odd under the transformation
� ! ��), since

� nðcosð3�Þ; i sinð3�ÞÞ ¼ nðcosð3�Þ; i sinð3�ÞÞ�
¼ nðcosð3�Þ;�i sinð3�ÞÞ
¼ nðcosð�3�Þ; i sinð�3�ÞÞ: (20)

Similarly, � is real and a function of cosð3�Þ and i sinð3�Þ.
This leads to the fact that � is �-even, because

�ðcosð3�Þ; i sinð3�ÞÞ ¼ �ðcosð3�Þ; i sinð3�ÞÞ�
¼ �ðcosð3�Þ;�i sinð3�ÞÞ
¼ �ðcosð�3�Þ; i sinð�3�ÞÞ: (21)

The potential �ð�Þ depends on � through �ð�Þ, �ð�Þ�,
�ð�Þ, nð�Þ, and e3i�. We then denote �ð�Þ by �ð�Þ ¼
�ð�ð�Þ;�ð�Þ�; nð�Þ; e3i�Þ, where �ð�Þ is suppressed since
it is �-even and does not make any influence on discussions
shown below. Equation (14) keeps the same form under the

transformation � ! ��, if�ð�Þ and�ð�Þ� are replaced by
�ð��Þ� and �ð��Þ, respectively. This indicates that

�ð��Þ ¼ �ð�Þ� and �ð��Þ� ¼ �ð�Þ; (22)

which is consistent with the result in lattice QCD [4].
Using these properties and the fact that � is real, one
can show that

�ð�Þ ¼ ð�ð�ÞÞ� ¼ �ð�ð�Þ�;�ð�Þ;�nð�Þ; e�3i�Þ
¼ �ð�ð��Þ;�ð��Þ�; nð��Þ; e�3i�Þ ¼ �ð��Þ:

(23)

Therefore, we can summarize that � is a periodic even
function of � with a period 2�=3, �ð�Þ ¼ �ð�þ
2�k=3Þ ¼ �ð��Þ. The chiral condensate �ð�Þ is also a
periodic even function of �, while the quark-number den-
sity n is a periodic odd function of �. These properties are
not changed by the presence/absence of the vector-type
four-quark interaction, as understood from the proof shown
above.
The real (imaginary) part of � is �-even (�-odd), be-

cause

Re ½�ð�Þ� ¼ ð�ð�Þ þ�ð�Þ�Þ=2 ¼ Re½�ð��Þ�;
Im½�ð�Þ� ¼ ð�ð�Þ ��ð�Þ�Þ=ð2iÞ ¼ �Im½�ð��Þ�;

(24)

where use has been made of (22). Thus, the real (imagi-
nary) part of � is a periodic even (odd) function of �.
Similarly, the absolute value j�j (phase
) of the Polyakov

FIG. 1. The Roberge-Weiss periodicity of (a) the chiral condensate, (b) the imaginary part of the quark-number density, (c) the real
part of the modified Polyakov loop, and (d) its imaginary part. The solid curves are for Gv ¼ 0, and the dashed ones are for Gv ¼
0:5Gs. The curves with cusps (�-even quantities) and those with discontinuities (�-odd quantities) are for T ¼ 250 MeV, while smooth
ones are for T ¼ 170 MeV.
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loop is a periodic even (odd) function of �, because j�j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRe½��Þ2 þ ðIm½��Þ2p
[
 ¼ arctanðIm½��=Re½��Þ]. Ob-

viously, these properties persist also in the case of Gv ¼ 0.
Since all quantities of our interest have the RW period-

icity, here we consider a period 0 � � � 2�=3 in the �-T
plane. In the region, periodic even functions such as �ð�Þ,
�ð�Þ, Re½�ð�Þ�, and j�j are symmetric with respect to a
line � ¼ �=3. This indicates that such an even function Xe

has a cusp at � ¼ �=3, if the gradient dXe=d�j�¼�=3�� is

not zero, where � is a positive infinitesimal. The phase
transition appearing in Xe at � ¼ �=3 is of the second
order. Meanwhile, Im½�ð�Þ�, 
, and n are periodic odd
functions of �. This leads to the fact that these are discon-
tinuous at � ¼ �=3, if the odd functions are not zero there.
Thus, the phase transitions appearing in the odd functions
at � ¼ �=3 are of the first order. These are seen in the high
T region, as shown later with numerical calculations. The
phase transition appearing at � ¼ �=3 is called the RW
transition. Thus, the RW phase transition is a family of
first-order transitions in �-odd quantities and second-order
ones in �-even quantities. This result is not changed by the
presence/absence of vector-type four-quark interaction.

As mentioned above, � of (14) is invariant under the
extended Z3 transformation for any complex chemical
potential � ¼ �R þ iT�. This implies that X has the RW
periodicity Xð�R þ iT�Þ ¼ Xð�R þ iTð�þ 2�k=3ÞÞ.
Actually, � depends on � only through the factor
expð3i�Þ, even if �R is nonzero. Hence, the solutions X
of @�=@X ¼ 0 are functions of expð3i�Þ. Thus, the con-
cept of the extended Z3 transformation is useful for any
complex chemical potential.

Finally, we briefly consider the case of real � by taking
� ¼ 0 in (14); here note that � ¼ � and �H ¼ �H. The
complex conjugate potential�� has the same form as�, if
��, n�, ��, and ��

H are replaced by �, n, �, and �H,
respectively. This indicates that the solutions X� of
@��=@X� ¼ 0 are related to the solutions X of @�=@X ¼
0 as

�� ¼ �; n� ¼ n; �� ¼ �; ��
H ¼ �H:

(25)

Furthermore, the first and second equations of (25) are
reduced to

d��

dm0

¼ d�

dm0

;
d��

d�R

¼ d�

d�R

; (26)

respectively. This indicates that � is also real.
Equation (14) keeps the same form under the transfor-

mation �R ! ��R, if �, �H, �, and n are replaced by
�H, �, �, and �n, respectively. This indicates that the
solutions Xð��RÞ of @�ð��RÞ=@X ¼ 0 are related to the
solutions Xð�RÞ of @�ð�RÞ=@X ¼ 0 as

�Hð��RÞ ¼ �ð�RÞ; �ð��RÞ ¼ �Hð�RÞ;
�ð��RÞ ¼ �ð�RÞ; nð��RÞ ¼ �nð�RÞ;

(27)

which is consistent with that in lattice QCD [4]. Using (27)
in (14), we can easily confirm that �ð�RÞ ¼ �ð��RÞ.
Thus, � and � are even functions of � in both the real
and imaginary � regions, so the chiral transition curve
shown later is plotted in the �2-T plane.

III. NUMERICAL RESULTS

We proceed to numerical calculations. Since the PNJL
model is nonrenormalizable, it is then needed to introduce
a cutoff in the momentum integration. Here we take a
three-dimensional momentum cutoff�. Hence, the present
model has four parameters m0, �, Gs, and Gv in the NJL
sector. Following Ref. [29], we take m0 ¼ 5:5 MeV, � ¼
0:6315 GeV, and Gs ¼ 5:498 GeV�2 that reproduce the
pion decay constant f� ¼ 93:3 MeV and the pion mass
M� ¼ 138 MeV. That is, we pin down parameters other
thanGv at� ¼ 0; then we treatGv as a free parameter and
vary its value in the range 0 � Gv � Gs.
Figure 1 represents the RW periodicity of various quan-

tities calculated with/without the vector-type interaction.
These graphs clearly show that the RW periodicity is not
affected by the inclusion of the vector-type interaction as
argued analytically. At T ¼ 170 MeV, which is below the
end point of the RW phase transition (point A of Fig. 3
below), all quantities are smooth as functions of �, whereas
at T ¼ 250 MeV, which is above the end point, the �-even
quantities� and Re½�� exhibit second-order and the �-odd
quantities Im½n� and Im½�� show first-order phase transi-
tions. We note here that the present end point A is lower
than in our previous works [6] because T0 in the Polyakov
potential was rescaled in the present calculation.
Next we pay attention to the impact of the vector-type

interaction on various quantities. Figure 2 represents the
four quantities the same as in Fig. 1 for half of a RW
period, 0 � � � �=3, calculated with various strengths
Gv. Note that here we present the results at T ¼
300 MeV since the effect of the vector-type interaction is
more conspicuous at higher temperatures. First of all, the
chiral condensate shown in Fig. 2(a), in particular, around
the RW transition at � ¼ �=3, is sensitive to Gv. The
calculated result means that the vector-type interaction
reduces the constituent quark mass M. The vector-type
interaction suppresses the effective chemical potential
~� ¼ i�T � 2iGv Im½n�. This directly affects Im½n�;
namely, Im½n� decreases as Gv increases. Although the
indirect effect through M, mentioned just above, works
oppositely, the direct effect is stronger and therefore sur-
vives. Consequently, effects of the vector-type interaction
on Im½n� shown in Fig. 2(b) as well as on � are significant.
Figures 2(c) and 2(d) indicate that the effects on the
modified Polyakov loop are negligible because it is fully
determined by the Polyakov potential. The physical value
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ofGv is still an open matter although its effect is significant
in the physical real � phase diagram (see Fig. 4 below).
Since the present calculation shows that its impacts on the
chiral condensate and the quark-number density are appre-
ciable in the imaginary � region where both lattice simu-
lations and effective model calculations are available, we
expect that it would be possible to determine a physical
strength of Gv by comparing both results, although the
former is not available yet for the case of the two-flavor
QCD.

We report the impact of the vector-type four-quark
interaction on the �2-T phase diagram ranging from nega-
tive to positive �2 in Fig. 3, since the order parameters �
are functions of�2 as proved analytically above. Point A is
the end point of the RW phase transition (dotted curve), B
is the crossing point of the ordinary chiral crossover tran-
sition curve (dotted-dashed curve) and the RW phase tran-
sition curve, C is the chiral critical end point, and D is the

chiral transition point at T ¼ 0. The reason why points A
and B are distinct in the present calculation, in contrast to,
for example, Refs. [3–5], is ascribed to the fact that the
chiral and the Polyakov-loop phase transitions take place at
different T on the RW phase transition curve � ¼ �=3.
They come closer if the scalar-type eight-quark interaction
is introduced; see Ref. [6]. Since in lattice simulations [3–
5] the chiral and Polyakov-loop phase transitions coincide
within errors, the strength of the vector interaction can be
inferred accurately from the lattice data after a scalar-type
eight-quark term with appropriate strength is taken into
account.
In the case without (with) the vector-type interaction,

points A, B, C, and D are located at ð�=T
;T=T
Þ¼
ði�=3�0:899ð0:899Þ;0:899ð0:899ÞÞ, ði�=3�1:284ð1:202Þ;
1:284ð1:202ÞÞ, ð1:482ð1:642Þ; 0:459ð0:170ÞÞ, and
ð1:606ð1:660Þ; 0Þ, respectively, where the chiral critical
temperature T
 at � ¼ 0 is 218 MeV regardless of the

FIG. 2. The impact of the vector-type four-quark interaction on the four quantities the same as in Fig. 1 at T ¼ 300 MeV for half of a
Roberge-Weiss period.

FIG. 3. The phase diagram in the �2-T plane (a) for Gv ¼ 0 and (b) for Gv ¼ 0:25Gs. Points A–D are explained in the text.
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presence or absence of the vector-type interaction. This
figure indicates that the effect of the vector-type interaction
on the phase diagram is visible in the real � part; it has
been known that the critical end point (CEP; point C)
moves to lower T and higher � as Gv increases and
eventually disappears at Gv 	 0:38Gs [22,24,28,29]. In
contrast, its effects are less in the imaginary � part of the
phase diagram although the values of � and Im½n� are
sensitive to it. This can be understood from the fact that
the effect of finite Gv on ~� is important when T is low
whereas the RW transition occurs at higher T. We note here
that this figure graphs the chiral transition curve although
the deconfinement transition temperature in the imaginary
� is lower. We confirmed that their difference decreases as
� increases due to finite Gv.

In our calculations, the parameters m0, �, and Gs are
determined to reproduce the observational values f� ¼
93:3 MeV and M� ¼ 138 MeV. If � (Gs) is changed by
5%, the variation shifts the chiral phase boundary between
points B and D in Fig. 3 by �15% (� 6%), f� by �15%
(� 4%), and m� by �1% (� 0:3%). The boundary is
more sensitive to � than Gs. Since the sensitivity of the
boundary to � and Gs is almost the same as that of f�, we
can think that these parameters are determined with good
accuracy by the observational data with only small errors.

Finally, in order to look into the correlation between the
key quantities in the imaginary and real � regions, we

present in Fig. 4 the relation between the chiral condensate
at � ¼ �=3 and T ¼ 250 MeV in the imaginary � region,
which can be directly measured in lattice simulations, and
the position of the chiral CEP in the real � region, which
cannot be measured. Both of them are functions ofGv. The
larger Gv is adopted, the smaller �� becomes. The right-
most point corresponds to Gv ¼ 0 while the leftmost does
to Gv ¼ 0:30Gs. Since the correlation shown in Fig. 4 is
evident, we hope this serves to determine the physical
value of Gv.

IV. SUMMARY

A key feature of QCD in the imaginary chemical poten-
tial (�) region is that the partition function has the ex-
tended Z3 symmetry. We prove that the Polyakov-loop
extended Nambu–Jona-Lasinio model possesses the sym-
metry, even if the vector-type four-quark interaction is
newly added to the NJL sector of the PNJL Lagrangian.
Thus, PNJL is a suitable model to analyze not only the real
� region but also the imaginary one.
Using PNJL, we have analyzed the effect of the vector-

type four-quark interaction in the imaginary � region and
investigated the correlation between the position of the
critical end point in the real� region and several quantities
in the imaginary� region. In the real� region, the position
of the CEP is known to be sensitive to the strength of the
vector-type four-quark interaction. Meanwhile, the present
analysis shows that in the imaginary � region the vector-
type four-quark interaction largely changes values of the
chiral condensate and the quark-number density. This in-
dicates that these quantities in the imaginary � region are
suitable to determine the strength and therefore the QCD
phase diagram in the real � region.
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