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Abstract

We show, in general, that when a discontinuity of either zeroth order or
first order takes place in an order parameter such as the chiral condensate,
discontinuities of the same order emerge in other order parameters such as
the Polyakov loop. A condition for the coexistence theorem to be valid is
clarified. Consequently, only when the condition breaks down, zeroth-order
and first-order discontinuities can coexist on a phase boundary. We show with
the Polyakov-loop extended Nambu–Jona–Lasinio model that such a type of
coexistence is realized in the imaginary chemical potential region of the QCD
phase diagram. We also present examples of coexistence of the same-order
discontinuities in the real chemical potential region.

Exploring the phase diagram of quantum chromodynamics (QCD) is one of the most important
subjects in hadron physics. Actually, many works have been done so far on this subject, and
it is expected that there appears several interesting phases in hot and/or dense quark matter,
for example, chiral symmetry broken and restored phases, confinement and deconfinement
phases, two-flavor color superconducting and color-flavor locked phases, and so on; for
example, see [1] and references therein. These phases are characterized in terms of some
exact or approximate order parameters such as the chiral condensate, the diquark condensate,
the Polyakov loop and so on. Therefore, correlations among these order parameters are to be
investigated. In particular, the relation between orders of their discontinuities is essential. It
was proven by Barducci, Casalbuoni, Pettini and Gatto (BCPG) [2] that different first-order
phase transitions take place simultaneously. The theorem corresponds to a generalization of
the Clausius–Clapeyron relation.

Studying these correlations directly in QCD is desired; however, in the finite chemical
potential region, lattice QCD is still far from perfection because of the sign problem, for
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Figure 1. Phase diagram in the μ2–T plane predicted by the PNJL model in the chiral limit.

example, see [3] and references therein. So the phase diagram was investigated with
effective models. Recently, important progress has been made by the Polyakov-loop extended
Nambu–Jona–Lasinio (PNJL) model [4–23]. This model can describe the chiral, the color
superconducting and the confinement/deconfinement phase transitions.

Figure 1 shows the phase diagram in the chiral limit predicted by the two-flavor PNJL
model without diquark condensate; the details of the calculation will be shown later. The
diagram is drawn in the μ2–T plane, where T stands for temperature and μ stands for quark
chemical potential. The solid and dotted curves represent first- and second-order chiral phase
transitions, respectively. In this paper, when an order parameter has a discontinuity in its value
(zeroth order), we call it the first-order phase transition. Meanwhile, when an order parameter
has a discontinuity in its derivative (first order) and its susceptibility is divergent, we refer to it
as the second-order phase transition. However, our discussion is mainly concentrated on the
relationship between zeroth- and first-order discontinuities.

On the solid curve between points C and D, two zeroth-order discontinuities emerge
simultaneously in the Polyakov loop and the chiral condensate. This is a typical example of
the BCPG theorem. As an interesting fact, on the dotted curves, two first-order discontinuities
take place simultaneously in the chiral condensate and the Polyakov loop. This implies that
the BCPG theorem on the zeroth-order discontinuity of order parameter can be extended to
the case of the first-order one. As another interesting point, on the dashed curve between
points A and B, a first-order discontinuity of the chiral condensate coexists with zeroth-order
discontinuities of quark number density and other θ -odd quantities, where θ = −iμ/T . On
the dashed curve moving up from point B, furthermore, the quark number density still has a
zeroth-order discontinuity, although the chiral condensate is always zero. Thus, the relation
between orders of discontinuities of various quantities is much richer than that the BCPG
theorem predicts.

In the left half plane of figure 1, μ is imaginary. However, the phase diagram in the region
is also important, since in the region lattice QCD has no sign problem and then its results are
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available. Hence, the validity of the PNJL model can be tested there by comparing the model
results with the lattice ones. Actually, it has been shown for the case of finite quark mass
that the results of the PNJL model are consistent with those of the lattice simulations [22].
Furthermore, the real μ system can be regarded as an image of the imaginary μ one, since the
canonical partition function of real μ is the Fourier transform of the grand canonical partition
function of imaginary μ [26].

The aim of this paper is to extend the BCPG theorem on the zeroth-order discontinuity
of order parameter to the case of the first-order discontinuity, that is, we show that once a
discontinuity of either zeroth order or first order takes place in an order parameter such as the
chiral condensate, discontinuities of the same order appear in other order parameters such as the
Polyakov loop. The original coexistence theorem of BCPG on the zeroth-order discontinuity
and the present coexistence theorem on the first-order discontinuity are preserved, when
the phase boundary is shifted in both the T- and μ-directions by varying values of external
parameters such as the current quark mass; the condition will be shown later in (15) and (16).
In other words, discontinuities in mutually different orders can coexist only when the condition
breaks. Such a situation is not just a trivial exception but a physical relevance. Actually, we
will show that the situation is realized in the Roberge and Weiss (RW) phase transition [26]
appearing in the imaginary chemical potential region of the QCD phase diagram, and prove
from the viewpoint of the coexistence theorem that the RW phase transition is a family of
zeroth- and first-order discontinuities. This resolution of the RW phase transition is a principal
subject of this paper. We present some examples of the coexistence by using the PNJL model
for both real and imaginary chemical potential regions in the phase diagram.

We begin with the grand canonical partition function

Z(T ,μ) = Tr exp[−β(Ĥ − μN̂)] (1)

with a Hamiltonian of the form

Ĥ = Ĥ 0 +
∑

α

λαÔα, (2)

where Ĥ 0 determines the intrinsic system, λα are external parameters conjugate to the
Hermitian operators Ôα and β = 1/T , μ is the chemical potential and N̂ is the particle
number. The thermodynamical potential �(T ,μ) is given by

�(T ,μ) = −T

V
ln Z(T ,μ) (3)

with V being the three-dimensional volume, and the entropy density s and the particle number
density n are also given by

s = −
(

∂�

∂T

)
μ,λ

, n = −
(

∂�

∂μ

)
T ,λ

, (4)

where the subscripts mean that they are fixed in the partial differentiation as usual. The
expectation value of the operator Ôα per volume

oα = 〈Ôα〉
V

= 1

V Z
Tr{Ôα exp[−β(Ĥ − μN̂)]} (5)

is given by

oα =
(

∂�

∂λα

)
T ,μ,λ′

, (6)

where the subscript λ′ shows that all λ except λα are fixed in the partial differentiation. The
subscripts of the partial differentiation will be suppressed for simplicity, unless any confusion
arises.
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Figure 2. External parameter dependence of the phase boundary. Phase boundaries are projected
on the μ–T plane from the λα–μ–T space.

First, we recapitulate the original BCPG theorem [2] on the zeroth-order discontinuity
(the first-order phase transition) in order to know what is assumed in the proof. The proof is
made as follows. We start with the assumption that there appears a discontinuity in oγ , and
show that the discontinuity propagates to other order parameters oα′ �=γ . Hereafter, α′ stands
for α except γ . Thus, no assumption is made beforehand on the property of discontinuities
appearing in oα′ . The first-order phase transition appearing in oγ is drawn by the solid curve
(μc, Tc) schematically in figure 2; its typical example is the chiral transition at low temperature
shown in figure 1. The phase boundary (curve A) is shifted to curve B by taking different sets
of external parameters, {λα}B. The thermodynamical potentials �i of phases i = 1 and 2 on
curve A satisfy the Gibbs condition

�1(Tc({λα}), μc({λα}), {λα}) = �2(Tc({λα}), μc({λα}), {λα}). (7)

Differentiating the thermodynamical potentials with respect to λγ on the curve leads to

∂�1

∂λγ

∣∣∣∣
c

+
∂�1

∂T

∣∣∣∣
c

∂Tc

∂λγ

+
∂�1

∂μ

∣∣∣∣
c

∂μc

∂λγ

= ∂�2

∂λγ

∣∣∣∣
c

+
∂�2

∂T

∣∣∣∣
c

∂Tc

∂λγ

+
∂�2

∂μ

∣∣∣∣
c

∂μc

∂λγ

, (8)

where the subscript |c denotes that the quantities are evaluated at (μc, Tc). Hence we obtain

δoγ = ∂Tc

∂λγ

δs +
∂μc

∂λγ

δn, (9)

where δx = x1 − x2 (x = oγ , s, n) is evaluated on the phase boundary. In figure 2, the
correspondence between each individual point on curve A and that on curve B is not unique.
This means that one can define an infinitesimal variation of Tc in the T-direction with fixed μc,

Tc(λγ + 
λγ ) − Tc(λγ ) = ∂Tc

∂λγ

∣∣∣∣
μc


λγ , (10)

and an infinitesimal variation of μc in the μ-direction with fixed Tc,

μc(λγ + 
λγ ) − μc(λγ ) = ∂μc

∂λγ

∣∣∣∣
Tc


λγ , (11)
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where the subscript |x denotes that x is fixed; these variations are illustrated by the arrows in
figure 2. Using these variations, one can see from (9) that

δoγ = ∂Tc

∂λγ

∣∣∣∣
μc

δs = ∂μc

∂λγ

∣∣∣∣
Tc

δn. (12)

We find from δoγ �= 0 that ∂Tc/∂λγ |μc
and ∂μc/∂λγ |Tc

are nonzero, since δs and δn never
diverge.

When all λα’s are fixed to zero, μc can be regarded as a function of Tc: μc = μc(Tc).
Differentiating (7) with respect to Tc, one can get

dTc

dμc
= −δn

δs
. (13)

Equation (13) is the Clausius–Clapeyron relation between δs and δn [27], and equation (12)
is a generalization of the relation to the case of nonzero λα .

A relation similar to (12) is obtainable for α′:

δoα′ = ∂Tc

∂λα′

∣∣∣∣
μc

δs = ∂μc

∂λα′

∣∣∣∣
Tc

δn. (14)

Here, it should be noted that the curve (μc, Tc) is defined by a discontinuity appearing in oγ .
The discontinuity δoγ �= 0 induces a new discontinuity δoα′ �= 0 through δs �= 0, when

∂Tc

∂λα′

∣∣∣∣
μc

�= 0. (15)

Similarly, the discontinuity δoγ �= 0 induces δoα′ �= 0 through δn �= 0, when

∂μc

∂λα′

∣∣∣∣
Tc

�= 0. (16)

Thus, when the conditions (15) and (16) are satisfied, two first-order phase transitions take
place simultaneously. In other words, the discontinuity of oγ propagates to other physical
quantity oα′ through those of s and n. The conditions mean that the phase boundary is shifted
in both the T- and μ-directions in the μ–T plane by varying λα′ .

An early application of the BCPG theorem was to the case of a 2+1 flavor model in which
two chiral condensations exist [28]. A similar situation is expected when an isospin chemical
potential is introduced in two flavor models if a flavor mixing interaction is included [29].

Here, we show an example of the simultaneous occurrence of zeroth-order discontinuities
of order parameters by using the PNJL model in the chiral limit. The formulation and the
parameter set of the PNJL model are given in [18, 30], where the pure gauge part is obtained
by reproducing lattice QCD data in the pure gauge theory [31, 32] as shown in [10]. In this
paper, we put m0 = 0 with keeping other parameters unchanged.

In the chiral limit, the chiral condensate σ = 〈q̄q〉 is an exact order parameter of the
spontaneous chiral symmetry breaking, namely, oγ = σ and λγ = m0 for the quark field
q and the current quark mass m0. The Polyakov loop � is an exact order parameter of the
spontaneous Z3 symmetry breaking in the pure gauge theory, but the symmetry is not exact
anymore in the system with dynamical quarks. However, � still seems to be a good indicator
of the deconfinement phase transition. We then regard � as an approximate order parameter
of the deconfinement phase transition.

Figure 3(a) represents T dependence of σ,� and the charge-conjugated Polyakov loop
�̄ at μ = 280 MeV. These are discontinuous at the same temperature T = 154 MeV. This
behavior is consistent with the BCPG theorem that guarantees the simultaneous occurrence of
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Figure 3. The temperature dependence of the chiral condensate σ , the Polyakov loop � and its
conjugate �̄ at (a) μ = 280 MeV and (b) μ = 50 MeV in the chiral limit. The chiral condensate
is normalized by the value at T = μ = 0. The inset in (b) represents � and �̄ near T = 260 MeV
that is the critical temperature.

zeroth-order discontinuities of order parameters. Here, one can also find that the μ dependence
of � is similar to that of �̄. This is true for other real μ.

The BCPG theorem does not necessarily mean that there cannot exist a quarkyonic phase
[33] defined in the limit of large number of colors as a phase that has a finite value of the
baryon number density n but is confined. This is understandable as follows. The quarkyonic
phase has recently been investigated with the PNJL model [7, 21, 34] and the strong coupling
QCD [35]. The PNJL analysis of [21] shows the simultaneous occurrence of zeroth-order
discontinuities of σ,� and n. However, the discontinuity in � is only a jump from a small
value to another small one, while that in n is a jump from almost 0 to a value larger than the
nuclear saturation density. As mentioned above, � is only an approximate order parameter
of the deconfinement phase transition, and then such a small jump is possible. Such a small
jump could be just a propagation of the discontinuity in σ . Thus, we cannot say necessarily
from the small jump of � that a first-order deconfinement phase takes place together with
the chiral phase transition and the phase transition of n. A plausible definition of a critical
temperature of the deconfinement phase transition is a temperature that gives � = 0.5. In
this definition, the deconfinement transition is a crossover, and then the BCPG theorem is no
longer applicable.

Next, we proceed to the case that an order parameter has a first-order discontinuity. In this
case, since a first-order discontinuity becomes continuous by a change of external parameters,
the boundary must be defined in terms of a susceptibility as follows. Here, we take the chiral
transition in two flavor systems at high temperature, shown by the dotted curve in figure 1,
as a typical example: namely, λγ = m0 and oγ = σ = 〈q̄q〉. The second-order chiral phase
transition at m0 = 0 becomes a crossover whenever m0 is finite [22]. It is possible to define
the phase boundary of such a crossover with the chiral susceptibility χσ = −∂σ/∂m0 so that
the T dependence of χ becomes maximum on the boundary. This definition works also in the
chiral limit, although the maximum is infinity. In this case, curves A and B in figure 2 are
reinterpreted as phase boundaries so defined and correspond to the chiral limit (m0 = 0) and
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to the case of small m0, respectively. Curve A can move continuously and reach curve B by
varying m0 from 0 to a finite value. The chiral susceptibility χσ is divergent on boundary A,
since the chiral phase transition is of second order there.

Now, we consider curve A defined above and its vicinity. The system concerned has no
zeroth-order discontinuity, δs = δn = 0. Differentiating δs = 0 with respect to λγ on the
boundary (μc, Tc) leads to

δ

(
∂s

∂λγ

)
+

∂Tc

∂λγ

δ

(
∂s

∂T

)
+

∂μc

∂λγ

δ

(
∂s

∂μ

)
= 0. (17)

Using the relation ∂s/∂λγ = −∂oα/∂T and the variations in the T- and μ-directions mentioned
above, one can get

δ

(
∂oγ

∂T

)
= ∂Tc

∂λγ

∣∣∣∣
μc

δ

(
∂s

∂T

)
= ∂μc

∂λγ

∣∣∣∣
Tc

δ

(
∂s

∂μ

)
. (18)

Taking the same procedure for δn = 0, one also obtains

δ

(
∂oγ

∂μ

)
= ∂Tc

∂λγ

∣∣∣∣
μc

δ

(
∂n

∂T

)
= ∂μc

∂λγ

∣∣∣∣
Tc

δ

(
∂n

∂μ

)
. (19)

Other order parameters oα′ satisfy the same equations as (18) and (19). Note that all the
equations are evaluated in the chiral limit λγ = m0 = 0. It is found from (18) and (19)
for oγ and the corresponding equations for oα′ that discontinuities δ(∂oγ /∂T ) �= 0 and
δ(∂oγ /∂μ) �= 0 induce new ones δ(∂oα′/∂T ) �= 0 and δ(∂oα′/∂μ) �= 0, when the conditions
(15) and (16) are satisfied. Thus, two first-order discontinuities of order parameters can coexist
under the conditions (15) and (16). Furthermore, it is found from (18) and (19) that δ(∂oγ /∂μ)

is not zero whenever δ(∂oγ /∂T ) is not zero, because of ∂n/∂T = ∂s/∂μ. Accordingly, the
first-order discontinuity of oγ emerges in both ∂oγ /∂T and ∂oγ /∂μ.

Here, we show an example of the simultaneous occurrence of two discontinuities by the
PNJL model in the chiral limit. Figure 3(b) represents T dependence of σ,� and �̄ at μ =
50 MeV. Obviously, � and �̄ are not smooth at Tc = 260 MeV. In the inset of figure 3(b), the
solid curves show � and �̄ near Tc = 260 MeV, and two dotted lines do tangential lines of the
solid curves at T = Tc − 0. The deviations between the solid curves and the corresponding
dotted lines indicate that � and �̄ are not smooth at Tc = 260 MeV. Thus, ∂σ/∂T , ∂�/∂T and
∂�̄/∂T are discontinuous at the same temperature, as expected from the coexistence theorem
on the first-order discontinuity of order parameter.

As shown in figure 3(b), δ(∂σ/∂T ) diverges at T = Tc, because ∂σ/∂T |T =Tc−0 = ∞ and
∂σ/∂T |T =Tc+0 = 0; note that σ � 0. A similar divergence is also seen on the second-order
chiral phase transition line (dotted curves) in figure 1. This divergence indicates from (18) that
∂Tc/∂m0|μc and/or δ(∂s/∂T ) diverge on the second-order chiral phase transition curve. If
δ(∂s/∂T ) is infinite there, the divergence will propagate to other quantities δ(∂oα′/∂T ) when
the condition (15) is satisfied. As shown below, this is not the case of the second-order chiral
phase transition. Figure 4 presents the T dependence of ∂s/∂T , the chiral susceptibility χσ

and the Polyakov-loop susceptibility χ��̄ at μ = m0 = 0 in panel (a) and the m0 dependence
of Tc at μ = 0 in panel (b); definition of χ��̄ is shown below. As shown in panel (a), χσ (the
dotted curve) diverges at T = 261.4 MeV, but ∂s/∂T (the solid curve) has a finite gap there.
Meanwhile, panel (b) shows that the gradient ∂Tc/∂m0 is divergent at m0 = 0. In the present
case, thus, the divergence in δ(∂σ/∂T ) does not propagate to other quantities δ(∂oα′/∂T ).
Accordingly, the coexistence of first-order discontinuities of order parameters takes place, but
the coexistence of second-order phase transitions does not occur necessarily, because there
is a possibility that ∂Tc/∂λγ |μc and ∂μc/∂λγ |Tc diverge. In other words, when ∂Tc/∂λγ |μc
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chiral susceptibility χσ has a divergent peak at T = Tc = 261.4 MeV.

and ∂Tc/∂λα′ |μc are nonzero and finite, or when ∂μc/∂λγ |Tc and ∂μc/∂λα′ |Tc are nonzero and
finite, the coexistence of second-order phase transitions takes place.

Susceptibilities χij of σ,� and �̄ can be written as [6, 15, 18]

χij = (K−1)ij (i, j = σ,�, �̄), (20)

where

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β

4G2
s �

∂2�

∂σ 2
− β

2Gs�2

∂2�

∂σ∂�
− β

2Gs�2

∂2�

∂σ∂�̄

− β

2Gs�2

∂2�

∂�∂σ

β

�3

∂2�

∂�2

β

�3

∂2�

∂�∂�̄

− β

2Gs�2

∂2�

∂�̄∂σ

β

�3

∂2�

∂�̄∂�

β

�3

∂2�

∂�̄2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

is a symmetric matrix of curvatures of � and (K−1)ij is an (i, j) element of the inverse matrix
K−1. In the chiral limit, � is invariant under the transformation σ → −σ [18] and hence
σ -even. In the case that the chiral phase transition is the second order, as shown in figure 3,
� becomes minimum at σ = 0 when T � Tc. Therefore, Kσ� and Kσ�̄ are zero at T � Tc,
because they are σ -odd. In this situation, χij at T � Tc are reduced to

χσ ≡ χσσ = 1

Kσσ

, χij = (
K−1

2

)
ij

(i, j = �, �̄), (22)

where

K2 =

⎛
⎜⎜⎝

β

�3

∂2�

∂�2

β

�3

∂2�

∂�∂�̄

β

�3

∂2�

∂�̄∂�

β

�3

∂2�

∂�̄2

⎞
⎟⎟⎠ . (23)

Thus, the susceptibilities of � and �̄ are decoupled from that of σ . In particular at T = Tc,
the curvature Kσσ is zero and then χσ is divergent, while at T > Tc the curvature Kσσ
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is positive and then χσ is a positive finite value. This divergence makes no influence on
other susceptibilities χij (i, j = �, �̄), since Kσ� and Kσ�̄ are zero; see [24, 25] for details.
Figure 4(a) is a typical example of this situation; χσ has a divergent peak, while χ��̄ does
not.

In the imaginary chemical potential region (μ2 < 0), as shown by the dashed curve
between points A and B of figure 1, there coexists a zeroth-order discontinuity of quark
number density n and a first-order discontinuity of chiral condensate σ . The coexistence is
consistent with the proofs mentioned above, as shown below. This is the principal subject of
this paper.

It is convenient to introduce a new variable θ = −iμ/T instead of μ. The conditions (15)
and (16) are then changed into

∂Tc

∂λα′

∣∣∣∣
θc

�= 0, (24)

∂θc

∂λα′

∣∣∣∣
Tc

�= 0. (25)

As shown later in figure 7, the coexistence of δn �= 0, δσ = 0 and δ(∂σ/∂θ) �= 0 always
appears on vertical lines θ = (2k+1)π/3 in the θ–T plane, where k is an integer. This indicates
that ∂θc/∂m0 = 0 and then the condition (25) breaks down. Taking the new variable θ also
changes (9) into

δσ̃ = ∂Tc

∂m0
δs̃ +

∂θc

∂m0
δñ = ∂Tc

∂m0
δs̃ (26)

with

s̃ = −
(

∂�

∂T

)
θ,λ

, ñ = −
(

∂�

∂θ

)
T ,λ

= inT , (27)

σ̃ =
(

∂�

∂m0

)
θ,T ,λ′

= σ, (28)

where use has been made of ∂θc/∂m0 = 0 in the second equality of (26). Thus, even if δñ is
not zero, one can keep δσ = 0 in (26) when δs̃ is zero.

The discontinuity δñ �= 0 was first pointed out by Roberge and Weiss (RW) [26], and is
often called the RW transition. Here, we consider how the discontinuity δñ �= 0 influences
other order parameters oα . In this case, curve A in figure 2 is defined by the discontinuity
δñ �= 0. The quantity δñ is a function of Tc, θc and λα , but θc does not depend on λα , namely,
δñ = −f (Tc({λα}), θc, {λα}). Differentiating δñ + f = 0 with respect to λα leads to

δ

(
∂ñ

∂λα

)
+

∂Tc

∂λα

δ

(
∂ñ

∂T

)
+

∂f

∂λα

∣∣∣∣
c̃

+
∂f

∂T

∣∣∣∣
c̃

∂Tc

∂λα

= 0 (29)

because of ∂θc/∂λα = 0, where the subscript |c̃ denotes that the quantities are evaluated at
(θc, Tc). Using ∂ñ/∂λα = −∂oα/∂θ and taking the variation in the θ -direction with fixed Tc,
one can obtain

δ

(
∂oα

∂θ

)
= ∂f

∂λα

∣∣∣∣
c̃

. (30)

Taking the same procedure for δs̃ = 0 leads to

δ

(
∂oα

∂T

)
= ∂θc

∂λα

∣∣∣∣
Tc

δ

(
∂s̃

∂θ

)∣∣∣∣
c̃

= 0 (31)
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Figure 5. The θ dependence of the chiral condensate and the imaginary part of the quark number
density at T = 300 MeV in the chiral limit.

because of ∂θc/∂λα|Tc = 0. Equations (30) and (31) indicate that order parameters are
discontinuous in ∂oα/∂θ but not in ∂oα/∂T . This property is different from that of the
ordinary second-order chiral phase transition, shown by the dotted curve of figure 1, that is
discontinuous in both ∂oα/∂θ and ∂oα/∂T . The coexistence of the zeroth-order discontinuity
of n and the first-order one of σ is originated from the fact that the RW transition line is vertical
in the θ–T plane and does not move in the θ -direction by changing the external parameter
λα = m0. The influence of the RW discontinuity of n on the Polyakov loop is discussed in the
following.

In the imaginary μ region, physical quantities have a periodicity of 2π/3 in θ , when these
are invariant under the extended Z3 transformation [22],

e±iθ → e±iθ e±i 2πk
3 , �(θ) → �(θ) e−i 2πk

3 , �̄(θ) → �̄(θ) ei 2πk
3 . (32)

This is called the RW periodicity [26]. The thermodynamical potential �PNJL and σ, s and n
are invariant under the extended Z3 symmetry, but � and �̄ are not [22]. However, this can be
cured by introducing the modified Polyakov loop � = � exp(iθ) invariant under the extended
Z3 transformation. We then consider a period 0 � θ � 2π/3 without loss of generality.

Figure 5 shows the θ dependence of the chiral condensate σ and the imaginary part of
n, Im[n], at T = 300 MeV; note that n is pure imaginary for imaginary μ by definition. The
chiral condensate has a cusp at θ = π/3, while n is discontinuous there. Thus, the first-order
discontinuity of σ and the zeroth-order discontinuity of n coexist, as predicted above.

Next, we consider the relation between the discontinuity of n and the Polyakov loop
transition by using Re[�] = (�(θ) + �̄(θ))/2. In the PNJL model, �(θ) and �̄(θ) are
treated as classical variables, and it is found from the expression for �PNJL in (13) of [18] that
�̄(θ) is the complex conjugate of �(θ) for the case of imaginary μ. Figure 6(a) shows the θ

dependence of the real part Re[�] at T = 300 MeV. There appears a first-order discontinuity
also in Re[�] on the line θ = π/3, as expected from (30).

Finally, we consider the imaginary part of �, Im[�] = (�(θ)−�̄(θ))/2i. This is also real,
but θ -odd (odd under the interchange of θ ↔ −θ ), because �(θ) = �̄(−θ) [22]. One cannot
use λαIm[�] as a source term λαOα , since it breaks θ -evenness, �PNJL(θ) = �PNJL(−θ), that
is the charge-conjugation symmetry of �PNJL [36]. To avoid this problem, we introduce a
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Figure 6. The θ dependence of � at T = 300 MeV in the chiral limit: (a) the real part and (b) the
imaginary part.
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Figure 7. Phase diagram on the θ–T plane predicted by the PNJL model in the chiral limit.

source term, λα sin(3θ)Im[�], designed to keep θ -evenness and the RW periodicity. This is
just an example of operators having the two properties. For this source term, (30) is reduced
to

δ(Im[�]) = −1

3

∂f

∂λα

∣∣∣∣
c̃

. (33)

Thus, δ(Im[�]) is finite on the RW phase transition line θ = π/3 because of ∂f /∂λα|c̃ �= 0.
This indicates that the zeroth-order discontinuity of n induces that of Im[�], as shown in
figure 6(b).

Throughout all the analyses, we can conclude that the zeroth-order discontinuity of a θ -odd
quantity n induces zeroth-order ones in θ -odd quantities and simultaneously first-order ones in
θ -even quantities; see [22] for the proof of the even/odd property of n, σ, Re[�], Im[�], |�|
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and arg[�]. As shown in figure 5, ∂σ/∂θ is finite on both sides of the critical chemical potential
θc. This means that the chiral susceptibility χ is finite. Hence, there is no second-order phase
transition on the RW line. Therefore, the RW phase transition is a first-order phase transition
and a family of zeroth- and first-order discontinuities.

Figure 7 shows the phase diagram on the θ–T plane that corresponds to the μ2 < 0 part of
figure 1. On the dashed line between points A and B, the RW phase transition mentioned above
emerges. The transition comes out also on the dashed line going up from point B, although σ

is zero there and then no discontinuity takes place in σ . The dotted curves represent ordinary
chiral phase transitions of second order.

To summarize, we showed that once a zeroth- or first-order discontinuity takes place in a
quantity oγ , discontinuities of the same order emerge in other quantities oα �=γ , if the conditions
(15) and (16) are satisfied, that is, if the phase boundary is shifted in both the directions of
T and μ in the T–μ plane by varying values of external parameters λα conjugate to oα . This
coexistence theorem is an extension of the BCPG theorem on the zeroth-order discontinuity
of order parameter (the first-order phase transition). When the conditions break, first- and
second-order discontinuities can coexist on the same phase boundary. The RW phase transition
in the θ–T plane, composed of zeroth-order discontinuities of θ -odd quantities and first-order
discontinuities of θ -even ones, is a typical example of the coexistence of zeroth- and first-order
discontinuities. The RW phase transition line is vertical and does not move in the θ -direction,
even if any external parameter varies. Thus, the shape of the phase boundary and its variation
with external parameters are essential in determining which type of coexistence is realized.
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Rößner S, Hell T, Ratti C and Weise W 2008 Nucl. Phys. A 814 118
[14] Hansen H, Alberico W M, Beraudo A, Molinari A, Nardi M and Ratti C 2007 Phys. Rev. D 75 065004
[15] Sasaki C, Friman B and Redlich K 2007 Phys. Rev. D 75 074013
[16] Schaefer B-J, Pawlowski J M and Wambach J 2007 Phys. Rev. D 76 074023
[17] Costa P, de Sousa C A, Ruivo M C and Hansen H 2009 Europhys. Lett. 86 31001

Costa P, Ruivo M C, de Sousa C A, Hansen H and Alberico W M 2009 Phys. Rev. D 79 116003

12

http://dx.doi.org/10.1103/RevModPhys.80.1455
http://dx.doi.org/10.1016/0370-2693(93)90727-Y
http://dx.doi.org/10.1103/PhysRevD.77.114503
http://dx.doi.org/10.1016/0370-2693(96)00447-9
http://dx.doi.org/10.1103/PhysRevD.66.096003
http://dx.doi.org/10.1103/PhysRevD.70.034511
http://dx.doi.org/10.1103/PhysRevD.72.065008
http://dx.doi.org/10.1016/j.physletb.2004.04.027
http://dx.doi.org/10.1103/PhysRevD.78.114019
http://dx.doi.org/10.1103/PhysRevD.77.114028
http://dx.doi.org/10.1103/PhysRevD.73.114007
http://dx.doi.org/10.1103/PhysRevD.74.065005
http://dx.doi.org/10.1103/PhysRevD.73.014019
http://dx.doi.org/10.1016/j.physletb.2007.10.012
http://dx.doi.org/10.1103/PhysRevD.77.054023
http://dx.doi.org/10.1140/epjc/s10052-006-0065-x
http://dx.doi.org/10.1103/PhysRevD.75.034007
http://dx.doi.org/10.1016/j.nuclphysa.2008.10.006
http://dx.doi.org/10.1103/PhysRevD.75.065004
http://dx.doi.org/10.1103/PhysRevD.75.074013
http://dx.doi.org/10.1103/PhysRevD.76.074023
http://dx.doi.org/10.1209/0295-5075/86/31001
http://dx.doi.org/10.1103/PhysRevD.79.116003


J. Phys. G: Nucl. Part. Phys. 36 (2009) 105001 K Kashiwa et al

[18] Kashiwa K, Kouno H, Matsuzaki M and Yahiro M 2008 Phys. Lett. B 662 26
Kashiwa K, Matsuzaki M, Kouno H, Sakai Y and Yahiro M 2009 Phys. Rev. D 79 076008

[19] Fu W J, Zhang Z and Liu Y X 2008 Phys. Rev. D 77 014006
[20] Abuki H, Ciminale M, Gatto R, Nardulli G and Ruggieri M 2008 Phys. Rev. D 77 074018

Abuki H, Ciminale M, Gatto R, Ippolito N D, Nardulli G and Ruggieri M 2008 Phys. Rev. D 78 014002
Abuki H, Ciminale M, Gatto R and Ruggieri M 2009 Phys. Rev. D 79 034021

[21] Abuki H, Anglani R, Gatto R, Nardulli G and Ruggieri M 2008 Phys. Rev. D 78 034034
[22] Sakai Y, Kashiwa K, Kouno H and Yahiro M 2008 Phys. Rev. D 77 051901

Sakai Y, Kashiwa K, Kouno H and Yahiro M 2008 Phys. Rev. D 78 036001
Sakai Y, Kashiwa K, Kouno H, Matsuzaki M and Yahiro M 2008 Phys. Rev. D 78 076007
Sakai Y, Kashiwa K, Kouno H, Matsuzaki M and Yahiro M 2009 Phys. Rev. D 79 096001

[23] Kouno H, Sakai Y, Kashiwa K and Yahiro M 2009 arXiv:hep-ph/0904.0925
[24] Fujii H 2003 Phys. Rev. D 67 094018
[25] Fujii H and Ohtani M 2004 Phys. Rev. D 70 014016
[26] Roberge A and Weiss N 1986 Nucl. Phys. B 275 734
[27] Halasz M A, Jackson A D, Shrock R E, Stephanov M A and Verbaarschot J J M 1998 Phys. Rev. D 58 096007
[28] Tawfik A and Toublan D 2005 Phys. Lett. B 623 48
[29] Frank M, Buballa M and Oertel M 2003 Phys. Lett. B 562 221
[30] Kashiwa K, Kouno H, Sakaguchi T, Matsuzaki M and Yahiro M 2007 Phys. Lett. B 647 446

Kashiwa K, Matsuzaki M, Kouno H and Yahiro M 2007 Phys. Lett. B 657 143
[31] Boyd G, Engels J, Karsch F, Laermann E, Legeland C, Lütgemeier M and Petersson B 1996 Nucl. Phys.
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