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Abstract

We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu–Jona-Lasinio model with a multi-
quark interaction that produces the nonlinear chiral–diquark coupling. We observe that this nonlinear coupling adds up coherently with the
ω2 interaction to either produce the chiral–color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a
large coexistence region in the phase diagram is consistent with the quark–diquark picture for the nucleon whereas its smallness is the prerequisite
for the applicability of the Ginzburg–Landau approach.
© 2007 Elsevier B.V. All rights reserved.

PACS: 11.30.Rd; 12.40.-y
The findings of recent ultra-relativistic heavy ion collision
experiments have stimulated a paradigm shift, that is, quark–
gluon plasma (QGP) is not a weakly interacting near ideal gas
but a strongly interacting near perfect fluid, called sQGP, at
least slightly above the transition temperature [1–3]. Quantum
chromodynamics (QCD) exhibits a variety of forms of matter
also at high density; chiral symmetry restoration, deconfine-
ment, and color superconductivity (CSC) [4]. As for CSC, var-
ious sub-phases at intermediate density are discussed recently
in addition to standard two flavor superconductivity and color
flavor locking.

First principle lattice QCD simulations describe high tem-
perature phenomena but their applicability to finite density is
limited due to the well-known sign problem and/or zero eigen
values of the fermion matrix. Therefore effective models, such
as the Nambu–Jona-Lasinio (NJL) model [5–8] or the ran-
dom matrix model [9,10], must be employed. Recently the
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Polyakov–NJL model that handles not only chiral restoration
but also deconfinement is actively studied [11–14].

Before CSC came into consideration, standard effective
models predicted that chiral restoration at high density is a
first order transition. (See also Ref. [15] and references cited
therein that go beyond the mean field approximation.) How-
ever, the vector interaction, which is not forbidden from sym-
metry consideration, rather necessary from a view point of nu-
clear physics but often ignored, may change the situation [16,
17]. The competition between the chiral 〈q̄q〉 and the di-
quark 〈qq〉 condensates on the temperature–chemical potential
(T –μ) plane was first considered by Berges and Rajagopal [18].
In their calculation, the two types of condensates are mutu-
ally exclusive. But, in principle, they can coexist, i.e., quarks
dressing chiral condensate can pair up. Pairing between such
constituent quarks would lead to the quark–diquark picture
for the nucleon [19]. On the other hand, recently Hatsuda et
al. obtained interesting results including a new end point in-
duced by the U(1) anomaly in the three flavor case, using
a model-independent Ginzburg–Landau (GL) approach to the
T –μ phase diagram [20]. Here it should be noted that the GL
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approach is applicable when all the order parameters consid-
ered are small, since the free energy is expanded with respect to
them. In the present case, both σ and Δ should be small. This
situation is realized in the vicinity of each phase transition, if
the coexistence region is small or vanishes. It is thus an impor-
tant information how large the region is, and effective models
are useful to answer the question.

We adopt a framework that can handle these aspects of the
QCD phase diagram on the same footing—an extended NJL
model with multi-quark interactions. (For introduction of multi-
quark interactions, see also Osipov et al. [21,22] and Huguet et
al. [23,24].) In a previous paper [25], we found that the σ 2ω2

and the σ 4 interactions sharpen the chiral transition weakened
by the ω2 interaction and also that the σ 4 interaction shifts the
critical end point to a higher T , lower μ point. In the present
Letter, we discuss the interplay of the chiral and the diquark
condensates brought about by the σ 2Δ2 interaction and its co-
herence/competition with the ω2 interaction. Here, σ , ω, and
Δ denote the scalar, vector, and diquark auxiliary mean fields,
respectively, defined later. Note that our study is limited to the
two flavor case at present.

The Lagrangian density of the extended NJL model adopted
in the present work is given by

L= q̄(i/∂ − m0)q + [
g2,0

(
(q̄q)2 + (q̄iγ5 �τq)2)

+ g4,0
(
(q̄q)2 + (q̄iγ5 �τq)2)2

− g0,2
(
q̄γ μq

)2 − g2,2
(
(q̄q)2 + (q̄iγ5 �τq)2)(q̄γ μq

)2

+ d0,2
((

iq̄cεεbγ5q
)(

iq̄εεbγ5q
c
)

+ (
iq̄cεεbγ5q

)(
iq̄εεbγ5q

c
))

+ d2,2(q̄q)2((iq̄cεεbγ5q
)(

iq̄εεbγ5q
c
)

(1)+ (
iq̄cεεbγ5q

)(
iq̄εεbγ5q

c
)) + · · ·],

where qc = Cq̄T and q̄c = qT C are the charge-conjugation
spinors, C = iγ 2γ 0 is the charge-conjugation matrix, q is the
two flavor quark field, �τ = (τ 1, τ 2, τ 3) are the Pauli matrices,
m0 = diag(mu,md) is the current quark mass matrix, ε and
εb are the totally antisymmetric tensors in the flavor and color
spaces, and gi,j and dm,n (i, j,m,n = 0,1,2, . . .) are the cou-
pling constants of quark–quark interactions. We consider only
the four- and eight-quark interactions ignoring higher-order in-
teractions denoted by ellipsis in the Lagrangian density. Among
the physically important eight-quark interactions, g4,0 and g2,2
terms will be ignored in the following, since their roles have
been clarified in our previous paper [25] as mentioned above
and we would like to concentrate on the chiral–diquark coexis-
tence. Under the standard mean field approximation (MFA), the
Lagrangian density reads

LMFA = q̄
(
i/∂ − (m0 + Σs) + Σvγ

0)q − 1

2
Σ∗b

d

(
iq̄cεεbγ5q

)

(2)− 1

2
Σb

d

(
iq̄εεbγ5q

c
) − U,

where
Σs = −2
(
g2,0σ + d2,2σ |Δ|2),

Σv = −2g0,2ω,

Σb
d = −2

(
d0,2Δ

b + d2,2σ
2Δb

)
,

Σ∗b
d = −2

(
d0,2Δ

∗b + d2,2σ
2Δ∗b

)
,

(3)U = g2,0σ
2 − g0,2ω

2 + d0,2Δ
∗bΔb + 3d2,2σ

2Δ∗bΔb,

and the auxiliary fields introduced are σ = 〈q̄q〉, ω = 〈q̄γ 0q〉,
Δb = 〈iq̄cεεbγ5q〉, and Δ∗b = 〈iq̄εεbγ5q

c〉.
The thermodynamical potential Ω of the system with finite

temperature T and chemical potential μ is then obtained as

Ω = −2Nf V

[∫
d3p

(2π)3
Ep

+ 1

β

{
ln

(
1 + e−βE+

p
) + ln

(
1 + e−βE−

p
)}

+ sgn
(
E−

p
)
E−

Δ + E+
Δ

+ 2

β

{
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(
1 + e− sgn

(
E−

p
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βE−

Δ
) + ln

(
1 + e−βE+

Δ
)}]

(4)+ V U,

where β = 1/T , μ̃ = μ+Σv, M = m0 +Σs, Ep = √
p2 + M2,

E±
p = Ep ± μ̃, E±

Δ =
√

E±2
p + |Σd|2, and sgn(E−

p ) is the sign
function. The corresponding scalar, vector, and scalar diquark
densities, ρs, ρv and ρd are given by

ρs = −2Nf M

∫
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(2π)3

1
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}
,

ρv = 2Nf

∫
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,

ρd = −2Nf Σd

∫
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(2π)3
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1
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,

where

nq = 1

1 + exp {β(Ep − μ̃)} ,

(8)nq̄ = 1

1 + exp {β(Ep + μ̃)} .

The gap equation can be derived by minimizing the thermody-
namical potential with respect to σ , ω, and Δ∗, their physical
solutions then satisfy the stationary condition

(9)

⎛
⎜⎝

∂
∂σ

(Ω
V

)

∂
∂ω

(Ω
V

)

∂
∂Δ∗ (Ω

V
)

⎞
⎟⎠ = G

⎛
⎝

σ − ρs
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⎞
⎠ =

⎛
⎝

0

0

0

⎞
⎠ ,

where the effective couplings are
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G ≡
⎛
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d
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∂ω

− ∂Σv
∂ω

− ∂Σ∗
d

∂ω

− ∂Σs
∂Δ∗ − ∂Σv
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d

∂Δ∗
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⎛
⎝
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2)

⎞
⎠ .

When det(G) �= 0, G has its inverse, and then the stationary con-
dition leads to σ = ρs, ω = ρv, and Δ = ρd.

It has been shown that the effect of the ω2 coupling on the
phase diagram is suppressed by the nonlinear terms, g4,0σ

4 and
g2,2σ

2ω2, in our previous paper [25]. Therefore, the vector cou-
pling g0,2 is fixed to the small value, 0.2g2,0. The adopted pa-
rameters for numerical calculations are summarized in Table 1.
We examine both signs for d2,2 since this is not determined
within the model and they would lead to different physical pic-
tures.

In the following, we discuss the phase diagrams obtained by
adopting the models with the parameters summarized in Table 1
putting emphasis on the chiral–diquark coexistence at low-T .
Fig. 1(a) graphs the phase diagram of the standard NJL model
with the diquark condensate. The coexistence region is very

Table 1
Summary of the parameter sets. The coupling constants are shown in GeV−2.
For all cases we adopt m0 = 0.0055 GeV, Λ = 0.6315 GeV, and σ0 =
−0.03023 GeV3. Here, Gω and GΔ are 0.2g2,0 and 0.6g2,0, respectively. (See
Table 1 in Ref. [25] for comparison.)

Model g2,0 g0,2 d0,2 |d2,2|σ 2
0

NJL + Δ2 5.498 0 GΔ 0
NJL + ω2 + Δ2 5.498 Gω GΔ 0
NJL + Δ2 + σ 2Δ2 5.498 0 GΔ 0.2GΔ

NJL + ω2 + Δ2 + σ 2Δ2 5.498 Gω GΔ 0.2GΔ
small in this case. Blaschke et al. first pointed out the existence
of this coexistence region adopting another parameter set with-
out the ω2 interaction [26]. Fig. 1(b) shows the effect of the
ω2 interaction, that is, it weakens both transitions and shifts the
chiral restoration to the higher density side and consequently
produces a coexistence phase at low-T . This confirms the result
presented by Kitazawa et al. [17]. Comparison of Figs. 1(a) and
2(a) demonstrates the effect of the σ 2Δ2 coupling for the case
of positive d2,2. This nonlinear interaction shifts the CSC tran-
sition to lower density and consequently produces a coexistence
phase. Fig. 2(b) includes both the ω2 and the σ 2Δ2 interactions.
They coherently add up in this case. This result can be under-
stood from the expressions of the effective couplings that lead
to

(11)Σs = −Gsσ σ = −2
(
g2,0 + d2,2|Δ|2)σ

and

(12)Σd = −GdΔΔ = −2
(
d0,2 + d2,2σ

2)Δ,

in which the former indicates that positive d2,2 enhances |Σs|
when Δ �= 0 exists and the latter indicates that positive d2,2
enhances |Σd| when σ �= 0 exists. This means that the σ 2Δ2

interaction acts only when the ω2 interaction makes σ and Δ

coexisting. Figs. 3(a) and 3(b) graph the result of the negative
d2,2. In this case the ω2 interaction and the σ 2Δ2 one are de-
structive to each other and consequently the coexistence region
becomes very small.

As mentioned above, the sign and the magnitude of the
eight-quark interaction is not determined within the present
model. The positive d2,2 results in a large coexistence region.
The sign is supported by the result of the quark–diquark model
for the nucleon [19] that the diquark interaction is sizably
stronger in the normal baryon-number density region than in the
high density one. However, further analysis is needed to deter-
mine the strength of the coupling more precisely in the normal
density region. Oppositely, if the negative sign is favored by
some reason, the coexistence region shrinks and the two phase
transitions occur at almost the same T and μ. In the vicinity,
Fig. 1. Phase diagrams given by (a) the standard linear NJL model and (b) the extended NJL model that includes the ω2 interaction.
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Fig. 2. Phase diagrams given by (a) the extended NJL model that includes the σ 2Δ2 interaction and (b) that includes the ω2 and the σ 2Δ2 interactions. In these
calculations d2,2 is positive.

Fig. 3. The same as Fig. 2 but d2,2 is negative.
the order parameters, σ and Δ, are small. Such a region is an
ideal playground for the GL approach, since the free energy is
expanded with respect to them. In other words, when the sign
is positive, the GL model is not useful to determine the phase
diagram except for the high-T region where both the order pa-
rameters are small.

We have studied the interplay of the chiral and the color
superconducting phase transition in an extended Nambu–Jona-
Lasinio model with a multi-quark interaction that produces the
nonlinear σ 2Δ2 coupling. We have found that the size of the
chiral–diquark coexistence region is sensitive to the sign of the
coupling. The positive sign is supported by the quark–diquark
model for the nucleon, but further analysis is needed to deter-
mine the density dependence of the diquark interaction more
precisely. Meanwhile, the negative sign is the prerequisite for
the applicability of the Ginzburg–Landau approach that has al-
ready been applied to determine the phase diagram. Thus, the
determination of the sign is an important subject related to the
phase diagram.
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