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Abstract

The chiral phase transition is studied in an extended Nambu—Jona-Lasinio model with eight-quark interactions. Equations for scalar and vector
quark densities, derived in the mean field approximation, are nonlinear and mutually coupled. The scalar type nonlinear term hastens the restoration
of chiral symmetry, while the scalar—vector mixing term makes the transition sharper. The scalar type nonlinear term shifts the critical endpoint
toward the values predicted by lattice QCD simulations and the QCD-like theory.
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Qualitative properties in quantum chromodynamics (QCD)
at high temperatures and densities attract much attention. One
of the most important recent findings is strong correlations in
the quark—gluon plasma just above the critical temperature; it
is realized as the near perfect fluidity [1-3] and the mesonic
correlations [4,5].

With the aid of the progress in computer power, lattice QCD
simulations have become feasible for thermal systems at zero
or small density [6,7]. At high density, however, lattice QCD
is still not feasible due to the sign problem. As an approach
complementary to the first-principle lattice simulations, we can
consider several effective models. One of them is the Nambu—
Jona-Lasinio (NJL) model. Since it was proposed [8], although
this is a model of chiral symmetry that does not possess a con-
finement mechanism, this model has been widely used [9,10] in
the mean field approximation (MFA), for example, for analyses
of the critical endpoint of chiral transition [11-16].
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Although the NJL model is recognized as a useful method
for understanding the chiral symmetry breaking, only a few
studies were done so far on roles of higher-order multi-quark
interactions [17,18], except for the case of the six-quark inter-
action coming from the ’t Hooft determinant interaction [19].
Since the NJL model is an effective theory of QCD, there is
no reason, in principle, why higher-order multi-quark inter-
actions are excluded. In the nonperturbative renormalization
group method [20], such higher-order interactions are produced
as a result of quantum effects in the high momentum region.
Such effects should be included in the low-energy effective ac-
tion from the beginning. Thus, it is quite meaningful to study
effects of higher-order interactions on the chiral phase transi-
tion.

In this Letter, we consider an extended NJL model that
newly includes eight-quark interactions and analyze roles of
such higher-order interactions on the chiral phase transition.
It is well known that the original NJL model predicts a criti-
cal endpoint to appear at a lower temperature (7') and a higher
chemical potential () than lattice QCD [7] and the QCD-like
theory [21,22] do. We will show in this Letter that a scalar type
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eight-quark interaction shifts the critical endpoint toward val-
ues predicted by lattice simulations and the QCD-like theory.

As for the repulsive vector type four-quark interaction
(q yﬂq)z, it is well known that it makes the chiral phase tran-
sition weaker in the low 7 and high p region, so there is a
possibility that the transition becomes a crossover in the region
when the interaction is strong enough [12,16]. In this point of
view, an absence of the vector type four-quark interaction may
be preferable in the high density region; the absence is also
supported by works of Refs. [23] and [24].

On the contrary, in the relativistic meson—nucleon theory
[25], the repulsive force mediated by vector mesons is nec-
essary to account for the saturation property of nuclear mat-
ter. Using the auxiliary field method, we can convert quark—
quark interactions to meson—quark interactions; for example,
see Refs. [26-28] and references therein. It is then natural to
think that there exists a relation between the meson—nucleon
interaction and the quark—quark interaction in the NJL model,
since a nucleon is composed of three constituent quarks each
of which has a large effective mass as a result of the spon-
taneous symmetry breaking (SSB) of chiral symmetry. In this
point of view, the vector type four-quark interaction (g yﬂq)2 is
indispensable around p ~ 308 MeV corresponding to the nor-
mal nuclear density region. Thus, it is expected that the vector
type interaction is sizable in the normal density region but sup-
pressed in the higher density region.

In the relativistic meson—nucleon theory, it is known that
nonlinear meson—nucleon interactions suppress the effective
coupling between mesons and nucleons in the higher density
region [28-31]. It is then strongly expected that a similar sit-
uation takes place in the NJL model as soon as higher-order
multi-quark interactions are introduced. This is shown in this
Letter.

This is the first work to study roles of eight-quark interac-
tions on phase transitions, so we concentrate our analysis on
the chiral phase transition and use a simple model with two
flavor quarks. Effects of the higher-order interactions on color
superconductivity will be discussed in a forthcoming paper.

We start with the following chiral-invariant Lagrangian den-
sity with two flavor quarks

L=q(if —mo)q + [2.0(Gq)* + @Giysig)?)
+ 24.0(@9)* + GivsTa)?)’ — g02(Gv"q)’

— 222(G)* + @ivsia)?)(@r'a)’ + -], (1)
where g, mo and g; ; stand for a quark field, a bare quark
mass and coupling constants. Here, we consider only four- and
eight-quark interactions by ignoring the higher-order interac-
tions denoted by dots in Eq. (1). Furthermore, we disregard
interactions including isovector—vector current that are not im-
portant in symmetric quark matter, and also the vector type
eight-quark interaction (g yﬂq)4, because the expectation value
of the vector current gypq is smaller than that of the scalar one
qq, unless the chemical potential is quite large. The mean field
approximation reduces the Lagrangian to

LMFaA
=q(ig —mo)g
+ [282,0 +484,0((3q)* + (GivsTq) )?

—2g22(qy"q)’ ](67 qq+ cm/sr
— [280.2 + 2822 ((Gq)* + (giysTq)*

— 220((G9)* + (Givstq)?) — 3ga0((dq)* + <qiysrq>2)2

+3822(139)> + @ivsta) D) ar™a) + go2ldvta). @)

Below, just for simplicity of the notation, we will omit terms
including the pseudo-scalar current gi ysT¢q and the spatial com-
ponents gy;q (i = 1,2,3) of the vector current, since their
expectation values vanish. It is convenient to introduce two aux-
iliary mean fields as

o ={(qq), = (qy0q)- €))
Using these auxiliary fields, one can rewrite Lypa as

Ly = q[if — (mo+ Z) + Zuwlg — U, 4)
where

Xy =—(28200 + 4g400° — 282,260)2),

2y =—(28020+28220%w),

U =g200" +3g400" — 382200 — go.20°. ()
It should be noted that the fourth-order scalar interaction (7¢)*
with positive sign in Eq. (1) turns out to be the o* term with
positive sign in the mesonic potential U. This model is thus
stable against big fluctuations in o, as long as g4,0 > 0.

The thermodynamical potential §2 of the system with finite
T and p is then given by

Q(T. ) = —2N;N.V
d3
@2n)3 B

+log(1+ e—mEp*M*)))} + VU, (6)

|:E + — (log( e PE—1Y)

where B =1/T, u* =+ Xy, E, =/p?> + M? and M stands
for the effective quark mass defined as M = mg + X. The cor-
responding scalar and vector quark densities, ps and py, are also
given by

d’p M
ps =2Ny¢N, 2n )3E (ng +ng—1),
10V=2NfNC/W(nq_n(2)v @)

where ny, = 1/[1 + exp{B(E, — u*)}] and nz; = 1/[1 +
exp{B(E, + n*)}]. The physical solutions of o and w satisfy
the stationary condition

(Z8)=(7.2%)=(0)
22)=9-0) =)

G G
g* = < so vo*) i (8)
Gw G
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Table 1
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Summary of the parameter sets, My at T =0 and p = 0, and the type of the transition at 7 = 0. The coupling constants are shown in GeV~2. The effective coupling

G, is fixed to 7.331 GeV

=2 in the NJL + w? and the NJL + &? + 0-2w? model and to 7.922 GeV ™

2 in the NJL 4+ 0% + w? and the NIL + 0* + »? + 0 2w? model.

For all cases, we take A =0.6315 GeV and M|7—;,—o = 0.3379 GeV and o = —0.03023 GeV3

Model 82,0 84,008 280,2 282208 Mo [GeV] Type
NJL 5.498 0 0 0 0.681 first order
NIL +o* 5.276 0.1109 0 0 0.650 first order
NIL + o? 5.498 0 Gy 0 0.681 crossover
NJL + 0? + 020? 5.498 0 0.8Gy 0.2G 0.681 crossover
NIL + 6% + o2 5.276 0.1109 Go 0 0.650 crossover
NIL + 0% + 0% 4 0202 5.276 0.1109 0.8G 0.2G 0.650 first order
Here we have defined four effective couplings, G, G%,, Gi,  we use the three-dimensional momentum cutoff as
*
and G}, as [28-31] N
1
X — / 2d (14)
GQE—'O_=2&0+1%MMJ—2&$f, (mo3 22 | PP
0
ij(, = v =4gr200, ) Hence, the present model has six parameters, mg, A, g2,0,
84,0, 80,2 and gz 2. We simply assume mg = 5.5 MeV. For
the case of g40 =0, A and g2 are fixed to reproduce the
G* =_ 9 X5 = —4grr00=—G* empirical values of the pion decay constant f; = 93.3 MeV
Sw — ) vo .
@ dw and the pion mass M, = 138 MeV. For the case of nonzero
X arameters A and are fixed to reproduce
G:l;w = _ v — 2g0,2 + 2g2’20,2. (10) g4,05 p . ’ g2,0 g4,0 p f7T
ow and M, mentioned above and M, = 650 MeV. In the latter

When det(G*) = G%,G}, + Gi,? # 0, which is satisfied in
our analyses below, the matrix G* has its inverse, and then the
stationary condition (8) leads to 0 = ps and w = py, show-
ing the consistency with Eq. (3) [30]. However, the solutions
o and w to the equations do not always yield a minimum of £2.
The solution o is then determined by searching for minima of
£2 (o, w(0)) in which w is eliminated using w = py.

Identifying giysTq with the pion field, we can define the
effective coupling G between a pion and quarks as

53
len)/ = ——————-LvFA

 8q8(qiysTq)8q (@iystq)=0

an

In the random phase approximation, the pion mass M, at T =
n =0 is determined with this effective coupling as

=i(2g2,0 + 484007 — 282207 ysT

T GEMI(M, My)'

d’p 1
I(x,y)=8N¢N, .
0 =g [ G VP AW ) — )

Similarly, the o-meson mass M, at T = u = 0 is determined
as

12)

M2 dmg + 32g4,()(73

= ——_ 0 L uMm2
o= Ge MIGM, My)

(13)
This equation indicates that M, < 2M when o < 0 and
84,0 > 0.

Since the NJL model is nonrenormalizable, it is needed to
introduce a cutoff in the momentum integration. In this Letter,

case, the contribution of the g4 ¢ term to G is about 11 per-
cents at 7 = 0 and p = 0. For the vector coupling constants
go0.2 and g2 2, we take two extreme cases, G, =0 and G, =
Gy /1.5, where G, = G;kd |T=pu=0 = 282,0 + 12g4y00§ and
G = G¥l7=p=0 = 2802 +282 204 for oy the scalar density at
T = 0and p = 0. Furthermore, in order to determine each value
of go2 and g2 2, we take two cases, (2802, 282, 20’0) =(Gy,0)
and (2802, ZgQ,ZGg) = (0.8G, 0.2G ). For the second case,
G}, is suppressed in the high p region, as shown later. Table 1
summarizes the parameter sets we have taken, M, at T =0 and
u = 0, and the type of transition at T = 0.

Fig. 1(a) shows the T dependence of the effective quark
mass for the case of i = 0. Since the w field has no contribution
to M when p = 0, results are shown only for the original NJL
and the NJL + o* model. The nonlinear o* interaction makes
the restoration of chiral symmetry faster, since the effective
coupling, responsible for the SSB of chiral symmetry, becomes
smaller as T increases, as shown in Fig. 1(b). However, the in-
teraction keeps the transition a crossover as in the case of the
original NJL. The NJL + o model yields a smaller transition
temperature (7; ~ 180 MeV) than the original NJL model does
(Tc ~ 190 MeV). The value, T, ~ 180 MeV, is close to the one
predicted by the lattice simulation (7; ~ 170 MeV) [7].

Fig. 2 shows the effective quark mass as a function of p with
T = 0. In the original NJL model, the chiral transition is the first
order. The nonlinear o# interaction makes the transition faster,
as shown in the result of the NJL + o* model.

As already shown in Refs. [12,16], the ? interaction tends
to change the transition from a first order to a crossover; ac-
tually this is seen in the result of the NJL 4+ w® model of
Fig. 2(a). As an interesting result, however, the nonlinear ot
and 02w’ interactions make the transition sharper again, so
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Fig. 1. The T dependence of (a) the effective quark mass and (b) the effective
coupling in the case of = 0.

that the transition returns to a first order in the full-fledged
NIL + 0# + @? 4+ 0>w* model with the present parameter set.
Thus, the nonlinear o* and o2w? interactions work so as to can-
cel out the well-known effect of the w? interaction.

Fig. 3 shows the effective couplings as functions of u for the
case of T = 0. For all models, both G} and G7, are suppressed
in the high u region, but each model has its own @ dependence.
In the NJL + o model, G%, decreases suddenly in the high
region and then approaches the value of 2g> o, because the o-
dependent part of G, almost vanishes there. Similarly, in the
NIL + o* 4+ »* model, G}, decreases rather rapidly but not
suddenly as p increases and approaches the value of 2g> . The
change in the 1 dependence of G, from the NJL + o* model
to the NJL 4+ o* + w? model comes from the fact that the w?
interaction makes the phase transition weak. In the NJL + w? +
o2w? model, G}, decreases gradually as p increases, because
the w-dependent part of G gives a negative contribution to the
effective coupling. In the full-fledged NJL + 0 4+ w? + o2w?
model, G} is suppressed suddenly by the o* interaction and
then suppressed gradually by the o2 mixing interaction.

(@) ' ] — —— NuLmodel
~ T NJL + o* model
04 : — NJL + o’model |
D
s
_ |
> il
[0) i
S 02 P
s i |
§|
y
0.1t ¥
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Fig. 2. The 1« dependence of the effective quark mass in the case of 7' =0.

As for G}, shown in Fig. 3(b), one can see a similar sharp
suppression but not find any gradual decrease. This is under-
standable from the fact that in Eq. (10) the coupling has a
o-dependent term but no w-dependent one. As a point to be
noted, the sharp suppression comes from the o>w? interaction
for the case of G¥, but from the o* interaction for the case of
G?, . Furthermore, note that the o2w? interaction yields both a
gradual decrease of G, and a sharp suppression of G%,,.

The p dependence of the effective couplings mentioned
above is similar to that of the chiral symmetry restoration shown
in Fig. 2. We can then consider that effects of higher-order
interactions on the chiral symmetry restoration are described
mainly through the effective couplings in their © dependences,
although U is also changed by the higher-order interactions.

Fig. 4 shows the phase diagram in the u—7 plane. Results are
shown for the three cases of the original NJL model, the NJL +
o* model and the NJL + 6 + »? 4 0>w? model in which the
transitions are first order in the high © and low T region. First-
order transitions take place on the curves in Fig. 4, and at the
endpoint (ue, Te) of each curve the transition is changed into a
crossover. The NJL + o* model yields smaller pe and larger 7¢
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Fig. 3. Effective couplings as functions of u in the case of 7 = 0.

than the original NJL model does; (ue, Te) = (308, 54) MeV
for the former and (330, 47) MeV for the latter. When we take
another parameter set, A = 0.6315 GeV, g2 = 5.00 GeV~2
and g4,0 =271 GeV 3, that reproduces M, = 600 MeV, the
endpoint of the NJL + o model is at (276, 62) MeV; see the
dot-dashed curve in Fig. 4. Thus, the nonlinear ¢ interaction
shifts the critical endpoint toward values predicted by a lattice
QCD calculation, (ue, 1) = (242, 160) MeV [7], and by the
QCD-like theory, (e, Te) ~ (200, 100) MeV [21,22].

As mentioned above, the w? interaction tends to change the
transition from a first order to a crossover, but this effect is
partially canceled out by the scalar—vector mixing interaction
o’w?. Consequently, as shown in Fig. 4, there exists a critical
endpoint also in the NJL 4+ 0 + w? + 0>w? model. A compar-
ison of our models with the results of lattice simulations and
the QCD-like theory indicates that the NJL + o* model is most
preferable among our models. This may imply that the cancel-
lation is essential.

As pointed out in Ref. [12], in the ordinary NJL model with
no higher-order interaction, the quark matter equation of state
has a saturation point, as far as the vector interaction is not too

T T T T T T T T T T
| NJL model i
........ NJL +c* model
— — — NJL+6" + @ +6* o’ model
0.06- \\ — -~ NJL+c" model (M, =0.6 GeV) |
N
- \\ n
— \\\
> 0.04- \ 1
S AR
~ \
- \\ T
\\
0.02- \ T
\\
L \ 8
!
! \ . 1 L |
0 0.3

K [GeV]

Fig. 4. Phase diagram in the u—7 plane. Each curve represents the location of
the first-order phase transition in each model. First three curves are the results
of the models with the parameter set that gives My = 0.65 GeV, while the last
one is the result of the model with the parameter set that gives My = 0.6 GeV
at the vacuum.

strong. However, the resulting baryon number density pg, at the
saturation point is rather higher than the normal density pg of
nuclear matter, say psa ~ 200. When the vector interaction is
quite strong, there exists no saturation point. In our model, due
to the higher-order interactions such as o* and/or oza)z, there
can be a saturation point, even if the vector interaction is rather
strong. However, the saturation density is still higher than py.
This deviation may come from the fact that the present model
has no confinement.

In the present model, the temperature of the critical end-
point is still lower than that obtained by lattice QCD, even if the
higher-order interactions are taken into account. The deviation
may be originated from confinement and the hadronic proper-
ties not included in the present model. It is reported that baryon
resonances make the temperature of the critical endpoint much
higher in the chiral hadron model [32,33].

In summary, we have studied effects of eight-quark interac-
tions on the chiral phase transition. The scalar type nonlinear
interaction o* hastens the restoration of chiral symmetry and
shifts the critical endpoint toward the values predicted by lattice
simulations and the QCD-like theory. The scalar—vector mixing
interaction o2w? can make the transition sharper in the high u
and low T region, while the w? interaction works in the oppo-
site direction. Thus, the effect of the mixing interaction tends to
cancel out that of the ? interaction in the high . region, while
the w? interaction is still strong in the normal nuclear density
region. The roles of the eight-quark interactions are well under-
stood through the effective couplings, G}, G, G¥, and G,
in their p dependences. Our results indicate that eight-quark in-
teractions are very important for the phase transition and must
be studied in detail.

It is also very interesting to study effects of the higher-order
interactions on color superconductivity itself and its correlation
with the chiral phase transition. The study is now in progress.
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