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Abstract: We test the stability of the mean field solution in the Nambu–Jona–Lasinio model in a semi-quantitative
manner. For stable solutions with respect to both the σ and π directions, we investigate effects of the
mesonic loop corrections of 1/Nc, which correspond to the next-to-leading order in the 1/Nc expansion,
on the high density chiral phase transition. The corrections weaken the first order phase transition and
shift the critical chemical potential to a lower value. At Nc = 3, however, instability of the mean field
effective potential prevents us from determining the minimum of the corrected one.
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At high temperature and density quantum chromodynam-ics (QCD) undergoes qualitative changes of great physicalinterest. Although many works are done, aspects of thetransition region are not under full theoretical control. Itis mandatory to deepen its understanding in order to un-derstand the structure of compact stars and the history ofthe early universe, as well as results of ultra relativisticheavy ion experiments. With the aid of the progress incomputer power, lattice simulations have become feasiblefor thermal system with zero or small density. In general,chiral restoration and deconfinement have been expectedto occur simultaneously [1]. But a recent lattice simula-
∗E-mail: matsuza@fukuoka-edu.ac.jp

tion results in different critical temperatures [2]. See alsoRef. [3] for the order of the high temperature transition.One of the most important recent findings is strong corre-lations in the deconfined quark gluon plasma just abovethe critical temperature; on the one hand it appears asthe near perfect fluidity [4–6] and on the other hand asthe mesonic correlations [7, 8].
As an approach complementary to the first-principle lat-tice QCD simulation, we can consider effective models. Inparticular, they are even indispensable at high densitywhere lattice QCD is not applicable due to the sign prob-lem. One of them is the Nambu–Jona–Lasinio (NJL) model.Since it was proposed [9, 10], this model has been widelyused [11, 12] in the mean field approximation, for example,for analyses of the critical end point of chiral transition onthe temperature (T )  chemical potential (µ) plane [13–16].

116



Tomohiko Sakaguchi, Kouji Kashiwa, Masayuki Matsuzaki, Hiroaki Kouno,
Masanobu Yahiro

On the other hand, this is a model that does not possessa confinement mechanism and thus it ignores its potentialimpact on the phase structure of QCD at finite µ. Only afew studies that go beyond the mean field approximationwere reported. Nikolov et al. [17] extended the meanfield approximation to the next-to-leading order in 1/Ncthat includes the meson loop contributions. The exten-sion preserves the symmetry property of the theory. Theystudied the meson loop effect in the case of T = µ = 0and concluded its importance due to the light pion mass.Hüfner et al. [18] formulated thermodynamics of the NJLmodel to order 1/Nc and Zhuang et al. [19] presented nu-merical results by using that formulation. Their analysesare mainly made for thermal system in the limit of zero µ.Although only a result is reported for the case that both
T and µ are finite, one can expect from the result that themeson loop corrections are important also for finite µ.In this paper our attention is focused on the finite-densitychiral phase transition in the limit of zero T . We firstinvestigate the stability of the mean field solution andfor the stable mean field solution we further evaluate themagnitude of corrections of meson loops, that is, of thenext-to-leading order in the 1/Nc expansion, using theauxiliary field method of Kashiwa and Sakaguchi [20] thatis essentially equivalent to the formulation of Hüfner et
al. [18].The Lagrangian density of the NJL model is

L = q̄(x)(i∂6 −m0)q(x) (1)
+ G2Nc

[(q̄(x)q(x))2 + (q̄(x)iγ5τaq(x))2] ,
where q(x) stands for two flavor quarks, and Nc for thenumber of color degrees of freedom. m0 is the currentquark mass and τa is the Pauli matrix. G is the couplingconstant of a four-Fermi interactions scaled by the colornumber Nc in order to use the 1/Nc expansion later. Thepartition function for the NJL model reads
Z = ∫

D qD q̄ exp[− ∫
β
d4x
(
q̄(x)(γµ∂µ +m0 − µγ4

− Jσ (x)− iγ5~τ · ~Jπ(x))q(x)− G2Nc

((q̄(x)q(x))2
+ (q̄(x)iγ5τaq(x))2)− Nc2G (J2σ (x) + ~J 2

π (x)))]. (2)
Here we introduced external fields Jσ and ~Jπ . The last termin Eq. (2) is introduced for later convenience. µ stands forthe chemical potential of quarks.The partition function (2) has the four-Fermi interactions,accordingly we cannot carry out the Gaussian integration

with respect to the quarks. Therefore, we introduce theauxiliary fields σ (x) and ~π(x) by using of the identity
1 = ∫ D σ exp[−Nc2G

∫
β
d4x

(
σ (x) + G

Nc
q̄(x)q(x))2] (3)

and the corresponding one for ~π. After integrating outquarks and shifting the auxiliary fields (σ (x) − Jσ (x)) 7→
σ (x) and (~π(x) − ~Jπ(x)) 7→ ~π(x), we obtain the partitionfunction of the auxiliary fields,

Z = ∫ D σD ~π exp [−NcI[σ, ~π]] , (4)
with
I[σ, ~π] = ∫

β
d4x

( 12G (σ 2(x) + ~π2(x)) (5)
+ 1

G

(
σ (x)Jσ (x) + ~π(x) · ~Jπ(x)))

− ln det [γµ∂µ +m0 − µγ4 + σ (x) + iγ5~τ · ~π(x)] .
The generating function for the connected Green’s function
W is defined as

Z [Jσ ,~Jπ ] ≡ exp [−NcW [Jσ ,~Jπ ]] . (6)
The fields φσ and ~φπ are also defined as
φσ (x)
G ≡ δW

δJσ (x) = 〈σ (x)〉
G = − 1

Nc
〈q̄(x)q(x)〉 − Jσ (x)

G (7)
for φσ and the corresponding one for ~φπ . The fields repre-sent the vacuum expectation values of the auxiliary fieldsin the external fields Jσ (x) and ~Jπ(x). The effective actionis defined by the Legendre transformation
Γ [φσ , ~φπ ] = W [Jσ ,~Jπ ] (8)

− 1
G

∫
β
d4x (φσ (x)Jσ (x) + ~φπ(x) · ~Jπ(x)) .

Setting Jσ (x) and ~Jπ(x) to constants leads to the effectivepotential
Γ [φσ , ~φπ ] Jσ ,~Jπ 7→const.=⇒ βVV(φ̄σ , ~̄φπ), (9)

where note that φσ (x) and ~φπ(x) become constants φ̄σ and
~̄φπ , respectively.
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In order to carry out the path integral in Eq. (4), weexpand Eq. (6) around the classical solution (σ0, ~π0):
I = I0 + 12

∫
β
d4xd4y(σ − σ0 ~π − ~π0) (10)

·
(
I(2)
σσ I(2)

σπ

I(2)
πσ I(2)

ππ

)(
σ − σ0
~π − ~π0

)+ · · · ,

I0 = ∫
β
d4x

( 12G (σ 20 + ~π20 ) + 1
G (σ0Jσ + ~π0 · ~Jπ))

− ln det[γµ∂µ +m0 − µγ4 + σ0 + iγ5~τ · ~π0], (11)

I(2)
âb̂ = 1

Gδ
(4)(x − y)δâb̂ (12)

+ tr[ΓâS(x, y : σ0, ~π0)Γb̂S(y, x : σ0, ~π0)],
where Γâ = 1 for â = σ and γ5τa for â = πa (a = 1, 2, 3).Here the classical solutions are governed by

δI
δσ (x)

∣∣∣∣
σ=σ0,~π=~π0 = 1

G (σ0(x) + Jσ (x)) (13)
− trS(x, x : σ0(x), ~π0(x)) = 0,

δI
δ ~π(x)

∣∣∣∣
σ=σ0,~π=~π0 = 1

G (~π0(x) + ~Jπ(x)) (14)
− tr [iγ5~τS(x, x : σ0(x), ~π0(x))] = 0,

(γµ∂µ +m0 − µγ4 + σ0(x) + iγ5~τ · ~π0(x)) (15)
·S(x, y : σ0(x), ~π0(x)) = δ(4)(x − y),

where S(x, y : σ0, ~π0) denotes the quark propagator in theexternal fields Jσ (x). Making change of variables such that(σ (x)−σ0(x)) 7→ σ (x)/√Nc and (~π(x)− ~π0(x)) 7→ ~π(x)/√Ncand carrying out the Gaussian integral with respect to σ (x)and ~π(x), we derive W as
W [Jσ ,~Jπ ] = I0 + 12Nc

Tr ln I (2) +O( 1
N2
c

)
, (16)

where Tr is the trace for mesonic degrees of freedom andthe spacetime coordinate. Equation (16) shows that theexpansion (10) introduced above turns out to be the 1/Ncexpansion. Inserting (16) into (7), we get the relation

between the classical fields and the corresponding fields
φσ (x) and ~φπ(x):

φσ (x) = σ0(x) + G2Nc

δ
δJσ (x)[Tr ln I (2)]

= σ0(x) + σ1(x)
Nc

, (17)
~φπ(x) = π0(x) + G2Nc

δ
δ~Jπ(x)

[Tr ln I (2)]
= ~π0(x) + ~π1(x)

Nc
. (18)

The Legendre transformation of Eq. (16) leads to
V(φ̄σ , ~̄φπ) = V0(φ̄σ , ~̄φπ) + V1(φ̄σ , ~̄φπ), (19)

V0(φ̄σ , ~̄φπ) = 12G(φ̄2
σ + ~̄φ2

π

)
− 1
βV ln det [γµ∂µ

+ m0 − µγ4 + φ̄σ + iγ5~τ · ~̄φπ], (20)
V1(φ̄σ , ~̄φπ) = 12NcβV

Tr ln I (2)(φ̄σ , ~̄φπ)
+ O

( 1
N2
c

)
. (21)

The leading term V0 corresponds to the contribution ofthe mean field approximation and the the next-to-leadingcontribution V1 to the contribution of meson loops of 1/Ncorder.Actual calculation of the effective potential (19) is done inthe momentum representation. The mean field part V0 isrepresented as
V0 = 12G ((M −m0)2 + ~̄φ2

π)
− 2Nf

∫ d3p(2π)3
{
Ep + 1

β ln [1 + e−β(Ep+µ)]
+ 1

β ln [1 + e−β(Ep−µ)]} , (22)
where Ep = (p2 + M2 + ~̄φ2

π)1/2 and M = m0 + φ̄σ . Themesonic loop correction part V1 becomes
V1 = 12Nc

[Aσ (T , µ) + 3Aπ(T , µ)], (23)

Aâ = 1
β

∞∑
n=−∞

∫ d3p(2π)3 ln [ 1
G − I1(iωbn,p)

+ ((iωbn)2 − p2 − ε2̂
a)I2(iωbn,p)], (24)
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where
I1(iωbn,p) (25)
= 2Nf

[ ∫ d3q(2π)3 12Eq

[1− f(Eq + µ)− f(Eq − µ)]
+∫ d3q(2π)3 12Ep+q

[1− f(Ep+q + µ)− f(Ep+q − µ)] ],

<I2(iωbn,p) = −Nf4
∫ d3q(2π)3 1

Ep+qEq

·
[

Ep+q − Eq

ωbn
2 + (Ep+q − Eq)2 (f(Ep+q + µ)

+f(Ep+q − µ)− f(Eq + µ)− f(Eq − µ))+ Ep+q + Eq

ωbn
2 + (Ep+q + Eq)2 (2− f(Ep+q + µ)

−f(Ep+q − µ)− f(Eq + µ)− f(Eq − µ))], (26)

=I2(iωbn,p)
= Nf

∫ d3q(2π)3 ωbn(ωbn2 + E2
p+q + E2

q)2 − 4E2
p+qE2

q

·(f(Eq + µ)− f(Eq − µ)
−f(Ep+q + µ) + f(Ep+q − µ)), (27)

with ωbn = 2πn/β and f(E) ≡ 1/(eβE + 1). In the limit ofzero temperature, these equations are reduced to simplerforms:
V0 T→0−→ 12G ((M −m0)2 + ~̄φ2

π) (28)
− 2Nf

∫ d3p(2π)3 [µ + (Ep − µ)θ(Ep − µ)] ,

Aâ
T→0−→

∫ dω2π
∫ d3p(2π)3 ln [ 1

G − I1(iω,p)
+ ((iω)2 − p2 − ε2̂

a

)
I2(iω,p)], (29)

I1(iω,p) = 2Nf

[ ∫ d3q(2π)3 12Eq

θ(Eq − µ)
+ ∫ d3q(2π)3 12Ep+q

θ(Ep+q − µ)], (30)

<I2(iω,p) = −Nf4
∫ d3q(2π)3 1

Ep+qEq

(31)
·
[

Ep+q − Eq

ω2 + (Ep+q − Eq)2 [θ(Eq − µ)− θ(Ep+q − µ)]
+ Ep+q + Eq

ω2 + (Ep+q + Eq)2 [θ(Eq − µ) + θ(Ep+q − µ)]],

=I2(iω,p) (32)
= Nf

∫ d3q(2π)3 ω(ω2 + E2
p+q + E2

q)2 − 4E2
p+qE2

q

·
[
θ(Eq − µ)− θ(Ep+q − µ)],

note that here ω becomes a continuous valuable.In the present analysis, we adopt the parameter set ofHatsuda and Kunihiro [21] that are determined so as toreproduce Fπ = 93 MeV andmπ = 138 MeV at T = µ = 0;the resultant values are the four-Fermi coupling constant
G = 32.976 GeV−2 and the ultra-violet divergence cutoff
Λ = 631 MeV, when the current quark mass is m0 = 5.5MeV.Figure 1 represents the effective potential at µ =330, 340, 348 and 500 MeV. When µ = 330 MeV, thereappears a minimum around M = 340 MeV at the meanfield level. The stability of the mean field solution can beinvestigated by the curvature of V0 in the φ̄σ and φ̄π direc-tions. In the region denoted by “σ unstable”, the curvatureis negative and then unstable in the φ̄σ direction. Simi-larly, in the region denoted by “π unstabl”, the curvatureis negative in the φ̄π direction. Fortunately, the minimumaround M = 340 MeV is out of the unstable regions. Thisproperty is held for other values of µ; three examples areshown in other panels of Fig. 1. As another interestingpoint, any π unstable region does not appear for µ > 330MeV. Thus, the mean field solution at the minimum pointis stable at any µ for the case of the present parameterset.The meson loop corrections in the unstable regions do notmake sense, since mesons considered there are tachyonic.Actually, the Gaussian integral in Eq. (4) breaks down fortachyonic mesons. Note that dashed curves in the unsta-ble regions are just a guide of eyes. In the Nc = 3 case,we can not see where is a minimum, since it is somewherein the unstable regions. So we take a somewhat larger
Nc = 20, in which a minimum is still out of the unstableregions even after the inclusion of the correction. We thenlook into the effect of the next-to-leading order correctionby comparing the mean field solution (the Nc →∞ case)and the finite Nc (= 20) case.First we discuss the result of the mean field approximation.Studies in the mean field approximation level have already
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Fig. 1. Non-dimensionalized effective potential as a function of the constituent quark mass. Cases of four different chemical potentials are
presented. Thickness of curves decreases as the number of color increases as 3→ 20→∞. Dashed curves indicate regions unstable
with respect to the σ and/or π directions. For µ = 330 MeV, regions unstable in the σ (π) direction are denoted by “σ unstable” (“π
unstable”). For µ > 330 MeV, all regions denoted by dashed curves are unstable only in the σ direction.

been done in Refs. [13–16]. At µ = 340 MeV (Fig. 1(b)) theminimum is still located around M = 340 MeV; this meansthat chiral symmetry is broken. At µ = 348 MeV (Fig. 1(c))two minima degenerate; in other words this is the firstorder phase transition point. At higher µ (Fig. 1(d)) chiralsymmetry is restored to some extent. In this case M at theminimum is still around 50 MeV due to the current mass
m0 = 5.5 MeV, and it decreases gradually as µ increases.
Now we consider the next-to-leading order correction dueto a finite Nc . In the case of Nc = 20 the results aresimilar to the mean field case but the correction weakensthe transition, in other words makes the jump in M small

and shifts the critical µ to a lower value. These are clearlyshown in Fig. 2.
Finally, we mention briefly the parameter dependence ofthe results above. The parameters of the NJL model, Gand Λ, are finely tuned so as to reproduce Fπ and mπ at
T = µ = 0 in the leading mean field level; and thereforethere is little room to change them aside from possible µdependence that is beyond the scope of the present paper.However we tried to vary them slightly to see their effect.We confirmed the robustness of the qualitative feature; indetail, increases (decreases) of both G and Λ result inincreases (decreases) of the unstable regions.
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Fig. 2. The value of the constituent quark mass at which the effec-
tive potential becomes minimum as a function of the chem-
ical potential. The mean field and the Nc = 20 cases are
presented.

To summarize, we have studied semi-quantitatively the ef-fects of the mesonic, i.e., the next-to-leading order in the1/Nc expansion, correction in the Nambu–Jona–Lasiniomodel on the high density chiral phase transition basedon the auxiliary field method. The finite Nc correctionweakens the phase transition and shifts the critical chem-ical potential to a lower value but it stays first order. At
Nc = 3, however, we can not see the minimum because ofthe instability of the mean field effective potential to thedirection of the σ and/or π classical fields. If the trendfound in the Nc = 20 calculation above survives down to
Nc = 3, it may lead to an analytic crossover. But, in or-der to check this, it is necessary to redetermine the modelparameters in the next-to-leading order; it is beyond thescope of the present paper. Combining this with the resultat µ = 0 would lead to non-existence of the critical endpoint.We still have a lot to do: First of all we have to redeter-mine the parameter set, the four-Fermi coupling constant
G and the ultra-violet cutoff Λ in the next-to-leading or-

der. Next we have to study the phase diagram at finite
T and µ to find the location of the critical end point, ifexists. Further, studies of the three flavor model and thecolor superconductivity phase are to be done.
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