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Liquid-Gas Instability and Superfluidity in Nuclear Matter
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We study effects of medium polarization on superfluidity in symmetric nuclear matter in
a relativistic formalism. The effect of the liquid-gas instability is emphasized. We examine
two types of decomposition of the nucleon propagator, the standard Feynman density and
the particle-hole-antiparticle ones. In both cases, the medium polarization effect is deter-
mined by a characteristic cancellation among the o, the longitudinal w, and the o-w mixed
polarizations. The instability leads to an increase of the pairing gap. Around the saturation
density, which is free from the instability, the medium polarization enhances the pairing gap
in the former case and reduces it in the latter. At the lowest density, which is also free from
the instability, the gap increases in both cases.

§1. Introduction

Superfluidity in nuclear matter has long been studied, mainly in pure neutron
matter, from the point of view of neutron star physics, with regard to such behav-
ior as cooling rates and glitch phenomena.)) In addition, superfluidity in nuclear
matter with a finite Z/N ratio is also becoming of interest as basic information
concerning the theory of the structure of finite nuclei, since recent developments in
RI-beam experiments have made it possible to study N ~ Z medium-heavy nuclei
and neutron-rich light nuclei.

At present, there are two models used to describe fundamental properties, such
as the saturation property of finite-density nuclear many-body system, the non-
relativistic and the relativistic models. They are understood as describing observed
properties almost equally well. Here we adopt the latter. The origin of quantum
hadrodynamics (QHD) can be traced back to Duerr’s relativistic nuclear model,?
which reformulated a non-relativistic field theoretical model of Johnson and Teller.?)
Since Chin and Walecka succeeded in reproducing the saturation property of sym-
metric nuclear matter within the mean-field approximation,® not only has QHD
evolved beyond the mean-field approximation as a many-body theory, but also its
realm of applicability has gradually enlarged from infinite matter to include spher-
ical nuclei, deformed nuclei, and rotating nuclei.”'®) These successes indicate that
the particle-hole channel interaction in QHD is realistic. By contrast, to this time,
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relativistic nuclear structure calculations with pairing have been carried out us-
ing particle-particle channel interactions borrowed from non-relativistic models, and
therefore the particle-particle channel in QHD has not been studied fully, even in
infinite matter. Despite its practical successes, this situation is unsatisfactory theo-
retically. For this reason, in this paper, we attempt to derive an in-medium particle-
particle interaction that is consistent with the relativistic mean field (RMF), al-
though only infinite matter can be treated at the present stage.

There have been many non-relativistic studies of pairing in nuclear matter. For
the particle-particle interaction entering into the gap equation, many authors have
adopted bare interactions, whereas others have adopted renormalized ones, such as
G-matrices. Although in the medium, intuitively it seems that renormalized interac-
tions should be used, the following reasons support the use of bare interactions: (1)
The Green function formalism leads to a sum of irreducible diagrams,?-19 and its
lowest order is the bare interaction; (2) the gap equation itself implies a short-range
correlation.’):1012) In general, medium renormalizations are believed to enhance
the gap by weakening the short-range repulsion. An interesting exception is the
Gogny force. This is known to reproduce the pairing properties given by bare in-
teractions, at least at low densities.'® In any case, as the next step, polarization
diagrams should be considered. In the non-relativistic framework, there have been
many works studying medium polarization effects on superfluidity in neutron mat-
ter.!¥ 22 All of them concluded that the medium polarization reduces the pairing
gap significantly. A recent ab initio calculation,??) however, indicates that the po-
larization effect is weak. Studies of polarization effects on symmetric nuclear matter
have just recently begun. Reference 24) reports that the gap increases substantially.
In the low density limit, Ref. 19) argues that in Fermi systems with four species, the
medium polarization enhances the gap.

Symmetric matter has also been studied in the relativistic framework.2?)
Both Refs. 25) and 26) report that the vacuum polarization reduces the gap, while
the latter reports that the medium polarization enhances the gap. References 26)
and 27) argue that the increase of the gap is related to the existence of an instability.
This is known as the liquid-gas instability.28)-30)

In this paper, we investigate the liquid-gas instability and its effects on super-
fluidity in symmetric nuclear matter. Results for the case of pure neutron matter
are also mentioned briefly. Preliminary results are reported in Ref. 31).

) 26)

§2. Liquid-gas instability in the relativistic random phase
approximation

We begin with the ordinary o-w model Lagrangian density,
L= qﬂ(i%ﬁ“ - MWJ
1 1 55 1 B B
+§(8NU)(8”U) — 50" ZQWQ“ + Qmwwuw“

+QJQEU¢ - gwlljww“w )
2 = Ouwy — Opwy, . (2-1)
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Here v, o, and w are the nucleon, the ¢ meson, and the w meson fields, respectively.
The quantities M, m,, and m, are their masses, and g, and g, are the nucleon-
meson coupling constants. The relativistic mean field approximation is carried out
by replacing the meson fields in the coupled equations of motion by their expectation
values, as

o — (o) =09,
Wy = {Wp) = dpowo - (2:2)
Then the nucleon effective mass (Dirac mass) equation is given by
M* =M — 9o 00
@A [
mzm? Jo  VE2 4 M2
where the isospin factor A can take the values 2 and 1 corresponding to symmetric

nuclear matter and pure neutron matter, respectively. The Fermi momentum kg is
related to the baryon density pp as

=M k2dk , (2-3)

A
pB = Wk% : (24)

The properties of normal fluid, zero temperature matter of a given density are com-
pletely determined by the above effective mass equation, (2-3). The so-called satu-
ration curve, or the equation of state, is given by the binding energy per nucleon,
E/A—-— M = &/pp — M, as a function of pg or kp. This immediately gives the

pressure,
o (€&
P=p2-2 (<), 2.
gerps <PB> #5)

The thermodynamic stability of the matter in the liquid phase is expressed by
OP/0pg > 0. Because the ratio of the sound velocity ¢s to the light velocity ¢

is given by
Cs 1 9P
A e il 2-6

the condition (cs/c)? < 0 depicted in Fig. 1 indicates the existence of a mechanical
instability to the gas phase. In this paper, we adopt M = 939 MeV, m, = 550 MeV,
my, = 783 MeV, g2 = 91.64, and g2 = 136.2.3%)

Quantum mechanically, the stability of a state is determined by the second
variation of the energy with respect to the fields.2®) This is equivalent to the ran-
dom phase approximation (RPA). The RPA in the present model, in which the
nucleon-nucleon interaction is mediated by mesons, is formulated by calculating the
meson propagators that couple to the particle-hole and particle-antiparticle polar-
izations.%)29):30):32) The Dyson equation that determines the RPA propagator D is
given by

D = Dg+ DolID (27)
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Fig. 1. Squared ratios of the sound velocity to the light velocity as functions of the Fermi momen-

tum.

Fig. 2. Feynman diagram representing the RPA meson propagator.

(pictorially described in Fig. 2), where the lowest order propagator,

_(D§ 0O
and the polarization insertion,
ms I
7= ) (29)
ny 1,
take the form of 5x5 matrices. Their components are given by
1
Dj(q) = 54—
O(Q) qz—mg—i—ie’
v _ qp v v Vi —1
Do (q) = <glw 2 ) Dy (q), Dgl(q)= FomZ i’ (2-10)
and
d*k
I15(q) = —ig? Tr
(@) = =ig? [ G TCHGE+a)].
, d*k
1) = =it | G TG G+ 0)].
, d*k
10) = igos. [ =i GRIGHE +a)]. (211)

Here, G(k) stands for the nucleon propagator, and the trace, represented by Tr,
includes isospin. The quantity U}YI stands for the matter-induced o-w mixed polar-
ization, in which a o excites a particle-hole pair, and then it decays into an w, and
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vice versa. Since Eq. (2-7) is formally solved as

1
D=—_D 2-12
1 DOH 05 ( )
the zeros of the dielectric function
e =det (1 — Doll) (2-13)

determine collective excitations.
For the present purpose, investigating the instability, only the real parts at zero
energy transfer are necessary. Therefore, we set

~1
DS = —"—
O lql? +m2
1
DY = —— (2-14)
* T g+ m?

and the second term in D(\)/W drops, because of the baryon number conservation.
This conservation law also restricts the non-vanishing components among I7; if we
choose the coordinate system as ¢ = (¢°,0,0,|q|), only IT" = II), — I35 and IIT =
I }/1 = HQVZ among H;Yz/ and I1° = H(l)\/[ among H}YI survive. Note that energy transfer
q° is set to zero; that is, we employ the instantaneous approximation. After some
permutations, 1 — Dgll becomes block diagonal, and consequently the dielectric

function reduces to

_ 2
€ = €LET,
er, = (1= DSII°)(1 — Dy IT") — D§ Dy (I1°)?,
er=1+DyIIT. (2-15)

The transverse dielectric function, er, is always positive in the density region in
which superfluidity is realized, whereas the longitudinal one, €r,, becomes negative
at intermediate densities; this reflects the liquid-gas instability.

In this work, we concentrate on the particle-hole polarization, keeping the corre-
spondence to non-relativistic calculations in mind. We examine two ways to extract
the particle-hole polarization, (1) the standard Feynman density (FD) decomposition
of G(k) and (2) the particle-hole-antiparticle (pha) decomposition. By definition, the
nucleon propagator in the medium is given by

1 o (1= 0(kr — |E|) 0(kr — |K|)
k) = 5 m [+ M) (55— TR )
- 1
— OB+ M) e = iJ
= Gy(k) + Gu(k) + Galk) | (2-16)

where
K = (E*(k),k), K= (-E*(k)k),

E*(k) = VK> + M*2. (2:17)



132 M. Matsuzaki

The first, second, and third terms here represent the propagator of the particle,
hole, and antiparticle, respectively. By sorting them with respect to the Heaviside
function, another form,

1 T

G(k) = (k" + M*)<k2 M tie | B (R)
= Gr(k) +Gp(k), =

O(K — E* (k))0kr — [k )

is obtained. The first and the second terms here are called the Feynman and the
density parts, respectively. The former consists of the antiparticle propagation and
a part of the particle propagation, while the latter consists of the hole propagation
and the other part of the particle propagation. In the standard FD decomposition,
the density dependent GpGp + GpGr part in Eq. (2-11) is regarded as the particle-
hole polarization. Note that the GpGp part is purely imaginary and therefore is not
necessary for the present purpose. In the pha decomposition, the GGy, + GyLG), part
in Eq. (2:11) represents the particle-hole polarization and this directly corresponds
to that in non-relativistic calculations.?®) Explicit expressions of IT are given in
Appendix A.

Figure 3 shows the longitudinal dielectric function ¢, for the FD and the pha
cases in the case of symmetric nuclear matter. At low momentum transfers, ef,
becomes negative in both cases. The density range of the instability is nearly the
same as that depicted in Fig. 1 for the FD case. This is consistent with the finding in
Ref. 28), in which the density range of the instability changes very little, even after
inclusion of the vacuum polarization. In the pha case, the instability region shrinks.
These results indicate that the liquid-gas instability existing over a wide density
range affects the pairing properties calculated using the RPA meson propagator that
exhibits instability.

Fig. 3. Longitudinal dielectric functions for symmetric nuclear matter as functions of the Fermi
momentum and the momentum transfer: (a) the FD case; (b) the pha case.
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§3. Medium polarization effects on superfluidity

The RPA meson propagator is given explicitly by

(1—-Dyn*)D§ DSDY1I° 0 0 0
€ €1,
D(‘)’D%HO (1-D§1IS)DY 0 0 0
1 €7, €L,
D=——"—Dy= —Dg -1
1— Doll ° 0 0 a 00 (3-1)
0 0 0 = 0
0 0 0 -DY

This gives the particle-particle channel interaction, which determines superfluidity,
as

3
Vepa = Y galuD*gu13,
a,b=—1
Yo 1 ra=-1,
g {—gw, ‘ {’m o= 32)

The antisymmetrized matrix element of this interaction for the 1Sy pairing channel
is given by

,l_}(p7 k) = <p8/7p~8/’VRPA’kS7 k~s> - <p8/,p~8/|VRPA’k;S, k8> (33)

Here, the argument |g| of D in Vypa is given by g = p — k, and the tildes represent
the time reversal operation. The pairing gap in relativistic systems can be described
in terms of the relativistic Nambu-Gor’kov formalism.3®)3) In Ref. 36) it was shown
that the effect of the coupling to the negative energy states on the Fermi sea pairing is
negligible. Ignoring this coupling, the relativistic Nambu-Gor’kov equation reduces
to the usual gap equation,30)

B T A(k) 2 .
Al = 87T2/0 (p,k)\/(Ek—EkF)Q-i-AZ(k})k . &4

after integration with respect to the angle between p and k. The effective mass
equation (2-3) is slightly modified when superfluidity is realized, becoming

M* = vik2dk

m2 71-2/ ,/ M*Q

, 1 By — Ej, .
Uk = 5 <1 N AQ(k:)> . (3-5)

Here we have E = E*(k)+ gw{(wo). Using these equations, we calculate superfluidity
in nuclear matter assuming that it is in a pure phase even in the density range in
which the liquid-gas instability would appear, as usual. We set the upper bound of
the integrations to 20 fm~!
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Here, some discussion about our choice of the interaction is in order. At lowest
order (i.e. tree level, in which case we have D — Dy), Vrpa reduces to the one-boson
exchange (OBE) interaction Vopg given by the RMF vertices (see Fig. 2). It is well
known that this OBE interaction gives an unphysically large pairing gap.?®) The
reason for this can be traced back to the fact that the RMF vertices were tuned only
below the Fermi momentum. In order to treat the higher-order (polarization) effects,
this OBE result must first be improved. We accomplish this by introducing a form
factor that smoothly modulates the high momentum part of the interaction®”) as
follows. Note that the authors of Ref. 26) adopted sudden momentum cutoffs so as
to reproduce the virtual state in the 7" matrix. We argued in Ref. 37) that a sudden
cutoff distorts the shape of the short-range pair wave function. (See also Ref. 38)
for a sudden momentum cutoff that reproduces the results of a bare interaction in
the pairing calculation.) From a general argument, the lowest order in the particle-
particle channel interaction that gives pairing should be a bare interaction and the
particle-hole channel interaction that determines the medium polarization should be
an in-medium one in principle. In the present investigation, however, we calculate
the tree and bubble contributions on the same footing, adopting an interaction of
in-medium nature, which reproduces the results of the bare interaction at tree level.
That is, in a sense, we regard the present RMF-OBE interaction with a form factor
as resembling the Gogny force in the non-relativistic pairing calculations.

In order to modulate the high momentum interaction that enters into the pairing
calculation, we introduce the form factor

AQ

@) = 21 (3-6)

at each vertex. Other forms were also examined in Ref. 37), but it was found that
their effects are very similar. The introduction of the form factor does not affect
the mean field (Hartree) part with momentum transfer ¢ = 0. The parameter A is
determined so as to minimize the difference between the pairing properties obtained
with the present calculation and those obtained with the RMF+Bonn calculation,
which is a hybrid calculation performed by adopting single particle states from the
RMF model and the Bonn potential as the pairing interaction. Here we adopt the
Bonn-B potential, because this has moderate properties among the available (charge-
independent) versions A, B, and C.39 The pair wave function,

1 AR
M= B0
Eqp(k) = \/ (i — Er )2 + A2(k) (3:7)

is related to the gap at the Fermi surface,
1 o

Alhr) = =33 |,

o(kp, k)p(k)kdk (3-8)
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and its derivative determines the coherence length,

= <fo ’2k2dk) , (39)

17 102 k2dk

which measures the spatial size of the Cooper pairs. These expressions indicate
that A(kp) and £ carry independent information, ¢ and %, respectively, in strongly-
coupled systems, whereas they are intimately related in weakly-coupled ones. There-
fore we search for a A that minimizes

= o Z {( (kp)rMF — A(kF)Bonn>2 n <§RMF - fBonn>2} ’ (3-10)

(kF)Bonn gBonn

with N = 11 (kg = 0.2,0.3,...,1.2 fm~!). The obtained value is A = 7.26 fm~".37)
For consistency, we included the form factor also in the polarization diagrams, but it
has almost no effect on them, because the polarization effectively involves only low
momenta (see the following figures).

Equation (3-1) indicates that Vgpa becomes ill-defined when the liquid-gas in-
stability occurs. This means that superfluidity in the liquid-gas coexistent phase
rather than that in the liquid phase should be considered. However, in the present
calculation, we consider the case in which the system remains in a pure phase also in
the instability region (0.3 fm~! < kg < 1.3 fm~! in the FD case), as usual. There-
fore, in that region, only a qualitative treatment is possible. Reference 27) also
mentioned the existence of the instability. Note that the treatment is quantitative in
high and low density regions, which are free from the instability. Figure 4 shows the
cross sections of the longitudinal and the transverse dielectric functions. Figure 4(a)
is for kp = 0.8 fm~! and (b) is for kp = 1.4 fm~!. The former shows that a low
momentum cutoff is necessary to regularize the calculation in the instability region.
For this reason, we introduce €qy, which acts to cut |q| that satisfies the relation
€1, /T(O, lg|) < €cut- Because other parameters were determined at the saturation
density, we chose €.yt = 0.65, which maintains the full variation of €1, and et around

1.2 Iongj. _— Iongj. _—
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Fig. 4. Cross sections of the dielectric functions for the FD case of symmetric nuclear matter as
functions of the momentum transfer: (a) kr = 0.8 fm™*; (b) kp = 1.4 fm™*.
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this density (see Fig. 4(b)). This also serves to make the kp dependence of A(kp)
smooth at the boundary of the instability region. Figure 5 plots the dependence
of A(kp = 0.8 fmfl) on €cyt. It is seen that its dependence is moderate around
the chosen value. Figure 6 compares the gap A(kp). This figure shows that the
medium polarization increases the gap at all densities in the FD case. This result
was also found in the previous calculation,”) in which the form factor modulating
the high momentum interaction was not introduced. Batista et al.,2%) who weakened
the effect of the bubble diagram with their x parameter, obtained a similar result.
The contents of the polarization interaction, Vrpa — VoBE, are decomposed in Fig. 7.
(The k dependence in Fig. 7(a) is a result of €.y for q.) These figures reveal the
characteristic feature that the o polarization and the longitudinal w polarization give
strong attractions, whereas the o-w mixed polarization gives a strong repulsion, and
they strongly cancel each other. The remaining tiny attraction leads to an increase
of A(kp). Tt is thus seen that the omission of the o-w mixed polarization in Ref. 25)
would cause an imbalance. The transverse w polarization, which represents the spin
density fluctuation, is slightly repulsive, but the repulsion in the momentum region
in which A(k) < 0 (which is predominantly determined by Vopg) also increases
A(krp), because of the structure of the gap equation (3-4).

Figure 6 also displays the result for the pha case. The results for the FD and
pha cases are very close to each other at low densities. This is because the particle
propagation contained in Gp is small. However, their difference grows as the density
increases; at high kg, the polarization reduces A(kp), in contrast to the FD case.
This is a result of the total polarization interaction becoming repulsive (Fig. 8).

Finally, we briefly mention the pure neutron matter case. It is yet unclear
whether a liquid-gas instability exists for pure neutron matter. In the present cal-
culations, it exists in the FD case. In the pha case, it does not exist but er, strongly
decreases at medium kp. Consequently, the behavior of A(kp) is similar to that in
the symmetric matter case (Fig. 9).

‘ ‘ ‘ ‘ 4 ‘ ‘ ‘ ‘ ‘ ‘ ‘
14 J OBE —
RPA(FD) -~
< 12} ] . RPA(pha) -
S 3l . (pha)
= 10t <
b= 3
) 6t g
T J
< 47 1
3 /
2r //'
0 ‘ ‘ ‘ : ol :
0 0.2 0.4 0.6 0.8 1 0 02 04 06 08 1 12 14
cax ke (fm™)
Fig. 5. Cutoff parameter dependence of A(kr) Fig. 6. Pairing gaps at the Fermi surface for
at kr = 0.8 fm™ 1. symmetric nuclear matter as functions of

the Fermi momentum.
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Fig. 7. Decomposition of the polarization interaction for the FD case of symmetric nuclear matter
as functions of the momentum: (a) kr = 0.8 fm~'; (b) krp = 1.4 fm ™.
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Fig. 8. The same as Fig. 7, but for the pha case.
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Fig. 9. The same as Fig. 6, but for pure neutron matter.

§4. Discussion and conclusion

20

In symmetric nuclear matter, the RPA predicts a liquid-gas instability at mod-
erate densities even at zero temperature. Although the present study is restricted to
zero temperature, the liquid-gas instability would produce an additional temperature
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dependence of the pairing gap. In the present study, we concentrated on the medium
polarization, but Ref. 28) showed that the liquid-gas instability survives even after
inclusion of the vacuum polarization. This indicates that the polarization effects on
superfluidity should be considered in the liquid-gas coexistent phase rather than in
the liquid phase. In the present investigation, however, we have studied superfluidity
in the liquid phase, as usual. Therefore, only a qualitative treatment could be car-
ried out for the density region in which the instability appears. We found that the
predicted gap is larger than the OBE result. In other regions, free from the insta-
bility, a quantitative treatment is possible. In those cases, it was found that the gap
increases in the FD decomposition and decreases in the pha decomposition at high
densities. At low densities, the gap increases in both cases. This behavior results
from the characteristic cancellation between the attraction from the o polarization
and the longitudinal w polarization and the repulsion from the o-w mixed polariza-
tion. The result for the FD case is consistent with that of another relativistic study
presented in Ref. 26), and of a non-relativistic study presented in Ref. 27). The
results in both cases are consistent with those of Ref. 19) as for the lowest density
region. It is known that the coupling to surface vibrations enhances pairing in finite
nuclei.?®42) This tendency is in the same direction as in the FD case in the present
calculation. However, because the polarization in the infinite matter case consists of
density modes, their correspondence should be clarified.

It should be stressed that it is an approximation to consider only the medium
(particle-hole) polarization in the relativistic model. For a more realistic treatment,
the vacuum (particle-antiparticle) polarization should also be included. Because
the gap is sensitive to the tiny part surviving the strong cancellation mentioned
above, inclusion of the vacuum polarization is important. Answering the question
of whether the FD or the pha decomposition is a better approximation of the full
calculation is postponed until we are able to carry out an analysis including the
vacuum polarization. This will be done in a later work. According to Refs. 43) and
44), the vacuum polarization leads to a decrease in the vector meson mass. In a
previous paper,*®) we examined this decrease using the in-medium Bonn potential
and concluded that it reduces the gap.

It is not yet clear whether the liquid-gas instability exists in pure neutron matter.
In the present calculation, it appears in the FD case. Although it does not appear in
the pha case, the longitudinal dielectric function decreases strongly. Consequently,
the results for the gap are similar to those in the symmetric matter case. Note that
decrease of the Landau parameter Fj to approximately —1 was reported in Ref. 27).
In most non-relativistic calculations,'®22) a decrease of the gap was reported. This
is due to tha fact that the liquid-gas instability does not appear and to the repulsive
effect of the spin density fluctuation. In the present model, the effect of the transverse
w polarization that corresponds to the spin density mode is weak. It is worth noting
here that a recent ab initio calculation?) concluded that the polarization effect in
pure neutron matter is weak.

From the point of view of many-body theory, higher-order diagrams, such as
those studied by Babu and Brown,® should be considered as an extension of the
present study. Other ingredients that are not considered in the present study are the
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inclusion of the exchange of other mesons, like 7 and p, and self-energy effects.*7)49)

Study of superfluidity in the liquid-gas coexistent phase is also an interesting issue.
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Appendix A
—— Medium Polarization Insertions

A.1. Feynman density decomposition

In the Feynman density decomposition, we have the following;:

2)\g> kr + B
8 = 229 [k; E 6M*2 2y (—F)
AM*2 + |q|? ok
AMT" A |qf” (2E1’§— 4M*2+|q|2) n |191 = 2ke
4q| \q| + 2kp

AM*2 2\3/2 E* . JAM*2 2 2M*2 k
( +1al%) ln‘ P + lg* + +lq FH (A1)

4/q| AM*2 + |q|? + 2M*2 — |qlkp

= 2A9‘U[ ke Bl — |q|2ln (M)

(2m)? M~
— 2kp
Ex(3|q|? +(2M*2 — |q2)/AM 2+ 2) |19l = 2ke
+ola |( F(3lq/2 - 4E¢2) + ( a*)V/ aP) n | o
1 Ex\/AM*2 2 4 2M*2 k
6‘ ‘ El:i /4M*2+|q|2+2M*2—|q|k:F
2Mg2 1 1 kg + Ef
T =— w[__k E: + —|q|?1 (—F)
omz |~ 3hr R+ gldTin (—E
1 ( 2, 3 12 2 2 lq| — 2kp
B <2E M2 2 )+ IN*2 — | q|2)/AM*2 + 2) In |91~ 2P
1 Ex\/AM*2 2 4 2M*2 k
6‘ ‘ El:i /4M*2+|q|2+2M*2—|q|k:F
2 —4 2 _
170 = 29 e [k + lal” — k), jlal = 2k | (A-4)
(2) 4lq| lq| + 2kp

A.2. Particle-hole-antiparticle decomposition

In the particle-hole-antiparticle decomposition, we have the following:
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(277) M+
(4M*2 4 !qP)W( lq| - 2kF‘ B ‘ FV/AM? + (g +2M*2 + !q!kF‘
8|q| g + 2kp Ein/AM*2 + |q2 + 2M*2 — |q|kp
Ex/AM*2 + q|? + 2M** + |q]* + | q|kr D
E_/AM*? + |q|* +2M*? + |q|* — |q|kp

* 2

(53 = 53) + —kF (e +e) - qu‘ (e -¢)

[ kp B — (6M*2+!q!2)ln(

o]

~ 6lq]
£, — Ex
4M*2 2y | S —ZF
1 %2 2 (5++kF+"I|)(‘€*+kF—|Q|)
+5(6072 1| )m\ Ve . (A-5)
2)\9 kr + ET.
L_ 2w [20 g 1012y F
i (271')2[3kF F || ( M~ )
1 lq| — 2kp
OM*2 — |q*)\/AM*2 + [q2(2In |1 1—=F
ol ) +laP(21n P

‘ 4M*2+\ql2+2M*2+!¢ﬂkF‘

Ef\/AM*2 + |q|? + 2M*2 — |q|kp

5+\/4M*2+!q!2+2M*2+Iq|2+|q|kFD

E- \/ M*“r!q!2+2l\4*2+|q|2 \q|kr
£ - 5) (53 53)

" 15lq y3< - 3| EAN

11 (5 53) ng(5++5) w(&—a)

+1‘

18\ \ 6| |
AEE? — 3 ] F
| |( lq?) T
_| . ‘ (& + ke + |q|) (- + kp - IQD } (A6)
M*2 ’
2Xg? 1 1 kp + B
T w * 2 F
— i - In (21 ZF
1 (27)? [ 6rER + gldl n( M )
M 2 _|q?)\/AM2 § yqy2(21n PR

Eji/AM*2 + |q]2 + 2M*? + |q|kr

o eI 2 gl
‘SH/WHM*MIqIQHq!kFD
E_\/AM*? + |q* + 2M*% + |q|* — |qlkp
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"30lq y3<55 £) - 6|k|2<83+83)

L (e2-¢) - gkrp (ev+€-) - SM" "+ Slal* (ev-¢)

36|q] 12|q|
E* Ef
I (4k% — SM*2 +3 ln‘—
L2y (Ex + ke +1ql) (E- + kr — |q]) A
_E q| n M*2 ) ( 7)
_2) 1 2—dakE &4 — Ef
(271') 2 4|q| & —Ef
3E* (
& —¢-)
" lqf
M*Zm‘(&—E* !q!)(€+—EE+|qI)H (A-8)
2lq| (- — Ef —ql) (6~ — B +ql)
Here, we use the definition
(‘:i = \/(k:Fi|q|)2—i—M*2. (AQ)
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