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Ordered bicontinuous double-diamond morphology in subsaturation nuclear matter
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We propose to identify the new “intermediate” morphology in subsaturation nuclear matter observed in a
recent quantum molecular dynamics simulation with the ordered bicontinuous double-diamond structure known
in block copolymers. We estimate its energy density by incorporating the normalized area-volume relation given
in a literature into the nuclear liquid drop model. The resulting energy density is higher than the other five known

morphologies.
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Understanding the form of existence of nuclear matter in
extreme environments is of importance both from the point of
view of nuclear many-body problems and from the context of
nuclear astrophysics. Nuclear matter with subsaturation densi-
ties (0.1n; — ny; n, being the saturation density) is believed to
exist in the inner crust of neutron stars and to appear at stellar
collapses. This density range corresponds to the transitional
region between a Coulomb lattice of spherical nuclei and a
uniform matter; Ravenhall et al. [1] and Hashimoto et al. [2]
showed that nuclear matter experiences various phases in the
course of density change. After that, this was elucidated by
various model calculations [3-9]. With the help of the recent
progress of computer power, not only the ground state at each
density but also the dynamical phase transitions between them
and the excited states were studied by means of first-principle
numerical simulations with the quantum molecular dynamics
(QMD) method [10-13]. Among them, the most basic is to
understand the form of existence of nuclear matter at each
density. Watanabe et al. [11] found, in addition to the five
known morphologies—sphere, cylinder, slab, cylindrical hole
(tube), and spherical hole (bubble)—a new “intermediate”
morphology that is characterized by negative Euler charac-
teristic, x < 0. They described this as a highly connected
spongelike shape and conjectured its relevance to astrophysics.

However, these five morphologies were known [14] in
block copolymers of, for example, styrene and isoprene. In
the nuclear case, the two domains are composed of matter
and void (or very dilute neutron vapor), whereas they are
composed of two kinds of polymers such as polystyrene
(PS) and polyisoprene (PI) in the macromolecule case. Their
morphologies are determined by a balance between the surface
energy and the Coulomb energy in the former, whereas by
that between the (inter-)surface energy and the stretching
free energy, like that causes rubber elasticity, in the latter.
A new morphology was found experimentally in a star block
copolymer by Thomas e al. [15] and in a diblock copolymer by
Hasegawa et al. [16] between the PS cylinder and the lamella
(slab) and between the lamella and the PI cylinder. These
experiment determined essentially the correct morphology
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(Fig. 4 in Ref. [15] and Fig. 3 in Ref. [16]). Soon thereafter
the shape of the interface between the two microphases was
mathematically recognized as the H surface—a family of
surfaces with constant mean curvature H [17]. The H surfaces
are known to minimize the area under the symmetry and
volume conservation condition. The observed morphology
is called the ordered bicontinuous double-diamond (OBDD)
structure according to its symmetry. The OBDD structure
consists of two interwoven networks of tetrahedral units (four
fold junctions) filled by one material and the remaining matrix
filled by the other. Calculations of its free energy were done
by several groups [17-19] and they concluded that the OBDD
structure is not the ground state at any PS/PI composition.

Both from the location—adjacent to the slab—of the
“intermediate” phase of Watanabe et al. and their observation
that it is highly connected spongelike, it is natural to interpret
this phase as the OBDD structure observed in block copoly-
mers. A direct calculation of the energy density of this structure
based on some microscopic nuclear Hamiltonian is desirable,
but unfortunately it is too complicated. Alternatively, here we
estimate its energy density by combining the familiar liquid
drop model relation and the normalized area-volume relation
of the OBDD morphology given in the literature [17].

The liquid drop model relations are taken from Ravenhall
et al. [1], who first predicted the nonspherical morphologies.
Under the Wigner-Seitz cell approximation, the total energy
density is given by Eg + E¢ + Ep + E., a sum of the surface
energy, the Coulomb energy, the bulk energy, and the kinetic
energy of electron gas. Here the Coulomb energy consists
of the nuclear electrostatic energy and the lattice energy of
electron gas and a spatially spread nucleus embedded in
it. Zero temperature is assumed. The model is formulated
by extending that for the spherical case given in Ref. [20].
We consider spherical (d = 3), cylindrical (d = 2), and slab
(d = 1) cases as in Ref. [1]. The unit cell for each case is a
sphere with radius 7., a cylinder with radius . and length /,
and a rectangular parallelepiped with the sides 2r.,a, b,
respectively. The average density over the cell is n. In each
cell, nuclear matter is put in the form of a sphere with radius r,
a cylinder with radius r and length /, and a rectangular
parallelepiped with the sides 2r, a, b, respectively. The density
of nuclear matter is n’. The other part of the cell is occupied
by a very dilute neutron vapor. The proton fraction is x. The
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volume fraction is u = n/n’ = (r/r.)?. The surface tension is
o. Among the total energy density, Es and E¢ depend on the
shape and size of the cell and are given by

uod
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Ec = 2nn"*x2e*r’ufy(u),
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The variation of Eg + E¢ with respect to r gives the familiar
relation

Es =2Ec. D
The bulk energy is given by

with £y and K being the binding energy per baryon and
the incompressibility. The variation of Eg + E¢ + Ep with
respect to n’ gives an equation that determines u [1]. That
for the cylindrical and spherical hole morphologies is similar.
Thus, n’, r, and r, for each n and morphology are determined.
The electron energy that is common to all morphologies are
irrelevant to energy comparison but can be given by

1
E, = %hc(37t2ne)ine,
e = Xn,

as an ultrarelativistic gas [20]. Adopting the parameter set
x =03, Eg=—11.4MeV, K =291 MeV, n; = 0.147 fm 3,
and o = 0.74 MeV/fm? given in Ref. [1] and relevant to stellar
collapses, the relative energy density and the cell size are
obtained as in Figs. 1 and 2. Figure 1 indicates the sequential
shape change as the density change. The cell sizes of the
spherical nucleus and hole in Fig. 2 are used later.

In the above model for the five known morphologies, Eg o
r~'and E¢ o r? are given independently and accordingly the
variation of their sum with respect to r leads to Eq. (1). In
the case of the OBDD structure, however, Eg and Ec cannot
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FIG. 1. (Color online) Total energy density of each morphology
relative to that of the slab, as a function of the average density.
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FIG. 2. (Color online) Cell size of each morphology as a function
of the average density.

be represented simply (at least to the author’s knowledge).
Alternatively, we can utilize the nondimensionalized area-
volume relation given for a cubic cell in Ref. [17]. With a
lattice parameter X, this gives S/X? as a function of V/X?.
Consequently, the surface energy density is given by

E S 1
S=0%

as a function of u = V/X3. The relation between u and n
is taken from the d = 3 (nucleus or hole) case. Assuming
that Eq. (1) holds also for this morphology, the Coulomb
energy is automatically determined. This means that the total
energy can be obtained because E g and E, are independent of
morphology. The area-volume relation in Fig. 3 for the OBDD
morphology was adapted from Fig. 1(b) in Ref. [17] for the
single-diamond structure. Because the relation

as
av
can be derived form the first variational formula of area,
the nuclear OBDD (V/X? < 0.5) is a family of surfaces
with H > 0, whereas the hole OBDD (V/X3 > 0.5) is that

with H < 0 (see Fig. 4 in Ref. [11]). Although the H > 0
and H < 0 parts are connected smoothly in the case of the
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FIG. 3. Normalized area-volume relation for the OBDD structure.
This is adapted from that for the single-diamond structure in Ref. [17].
The derivative is proportional to the mean curvature.
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FIG. 4. (Color online) Total energy density of nuclear and hole
OBDD structures relative to that of the slab, as functions of the
average density. Those for the known morphologies are the same as
in Fig. 1.

single-diamond structure, their curvatures are discontinuous in
the case of the double-diamond structure. This indicates that
the lamella structure exists between them.

Assuming X = (47 /3)'3r.(d =3) (see Fig. 2), we
estimate the energy density of the OBDD phase. The result is
shown in Fig. 4. This figure indicates that this simple estimate
gives 25-30 keV/fm? higher energy for the OBDD structure
than the slab. Qualitatively, this result is consistent with that
the OBDD phase is not the ground state at any composition
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in block copolymers. In the previous works, the “cross”
phase in Ref. [4] and the “mixed” phase in Ref. [5] might
correspond to the OBDD phase although our estimate gives
higher energy. We did not try to change the parameters given
in Ref. [1] because all parameters correlate and they require
Skyrme model calculation that is beyond the scope of the
present simple estimate.

To summarize, we proposed to identify the new
“intermediate” morphology in subsaturation nuclear mat-
ter observed in a recent QMD simulation with the or-
dered bicontinuous double-diamond structure known in block
copolymers. We estimated its energy density in a hybrid
manner—incorporating the normalized area-volume relation
given mathematically in a literature into the nuclear liquid
drop model. The resulting energy density is higher than the
other five known morphologies; this is qualitatively consistent
with the results for block copolymers.

Note added in proof. After submission of the manuscript,
the author found that another constant mean curvature surface,
the bicontinuous double-gyroid structure similar to the OBDD
but consisting of three-fold junctions [21], is favored in block
copolymers. In the nuclear case, mathematical surfaces are
meaningful as an idealization and therefore it would be difficult
to distinguish them.

The author thanks S. Ei for directing his interest to block
copolymers.
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