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Abstract

The precession mode, the rotational excitation built on the high-K isomeric state,
in comparison with the recently identified wobbling mode has been studied. The

random-phase-approximation (RPA) formalism, which has been developed for the nuclear
wobbling motion, is invoked and the precession phonon is obtained by the non-collective
axially symmetric limit of the formalism. The excitation energies and the electromagnetic
properties of the precession bands in !"®W are calculated, and it is found that the results of

RPA calculations well correspond to those of the rotor model; the correspondence can be
understood by an adiabatic approximation to the RPA phonon. As a by-product, it is also
found that the problem of too small out-of-band B(E?2) in our previous RPA wobbling
calculations can be solved by a suitable choice of the triaxial deformation which corresponds

to the one used in the rotor model.

PACS numbers: 21.10.Re, 21.60.Jz, 23.20.Lv, 27.70.+q

1. Introduction

In this paper, recent progress of the study on the wobbling
and precession modes in nuclei is presented. These keywords,
wobbling and precession, represent the motions of classical
tops. They are quite interesting because they describe three-
dimensional (3D) rotational motion, and so are related to a
fundamental question: how does a nucleus rotate as a 3D
quantum object?

It is not known how strictly these two are distinguished,
but in the following, wobbling for motions of a triaxial-body
and precession for those of an axially-symmetric body are
used. In the lowest energy motion, the top rotates about one
of the principal axes with largest moment of inertia, but when
excited the angular momentum vector tilts from this axis in
the body-fixed (intrinsic) frame. Then, looking at it from the
laboratory frame, the body wobbles or precesses, and that is
where these names come from. In classical mechanics, these
two are similar; actually the difference is that the trajectory of
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the angular momentum vector is a pure circle in the case of
precession, while it is an ellipse in the case of wobbling.
However, the atomic nucleus is a quantum system and
the situation is dramatically changed: the collective rotation
cannot occur about the symmetry axis. Thus, the quantum
spectra corresponding to the wobbling and precession motions
are completely different. In the case of wobbling, the spectra
associated with an intrinsic configuration are composed of
multiple rotational bands; the lowest (yrast) one represents
the uniform rotation about the main rotation axis, the first
(one-phonon) excited band represents a quantized motion
of tilting angular momentum vector, and so on (more
excited band with more tilting angle). These (Al =2)
rotational bands corresponds to a collective rotation about
the main rotation axis with largest moment of inertia.
Since the excitation of phonons, or tilting the angular
momentum vector, is another type of rotation about the axis
perpendicular to the main rotation axis, these excitations form
(Al =1) vertical sequences. In this way, the wobbling
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motions show a complicated band structure, horizontal
rotational sequences and vertical phonon-like excitations.

On the other hand, the angular momentum along the
symmetry axis (the main rotation axis) is generated by quasi-
particle alignments in the high- K isomeric configurations, and
no collective rotation exists about it in the case of precession.
There are no horizontal sequences leaving only one vertical
band for each intrinsic configuration, which is nothing but a
collective rotation about the perpendicular axis to the high-K
angular momentum.

Recently, the wobbling phonon spectra have been
identified among the triaxial superdeformed (TSD) bands in
Lu nuclei [1, 2], up to two-phonon excitations. By using
the microscopic framework, the random-phase approximation
(RPA), we have studied the wobbling phonon in the Hf-Lu
region [3, 4]. The precession bands are rotational bands
excited on the prolate high-K isomers and have been known
for many years, see e.g. [5]. We have recently investigated the
properties of the precession modes applying the same RPA
formalism in comparison with the wobbling modes [6, 7].
The content of this paper is largely based on the results
of [7], and a further development on the out-of-band B(E?2)
transition probability of wobbling phonon excitations (see the
section 3).

2. Precession mode as a phonon

The study of wobbling and precession modes has a long
history (see references quoted in [7]). Our recent works
on wobbling motions rely on the microscopic framework
developed in 1979 by Marshalek [8]. At almost the same time,
a very important work for the precession mode has been done
here in Lund in 1981 by Andersson et al [9] (cf also [10, 11]).
In this work, the microscopic RPA formalism was used, which
is known to be suitable to describe vibrational excitations. The
reason why the RPA is employed for such specific rotational
motions as the wobbling and precession modes can be easily
understood in the case of a precession band, i.e. the high-K
rotational band.

The spectra of a high-K rotor is well known:

1
Ehigh-K(1)=E[1<1+1)—K21, I=K). (1)

Putting n = I — K and assuming K is large, it is easy to see
that this leads to an approximately harmonic spectrum,

1 n(n+l)> )

Ehigh-K (”) = Wprec <l’l + 5 + K

where wpc = K/J. is the precession phonon energy. The
remaining anharmonic term is of order (1/K) and can be
neglected at the high-K limit. This harmonic picture is also
valid for the E2 transitions,

5
B(E2) = (E) Q% (1;K20|I;K)>. 3)

By taking the high-K asymptotic limit in the Clebsch—Gordan
coefficient,

B(EZ;n+1—>n)o<3|:

B(E2in+2~ n) o (%) [w] ’

(n+1)
!

K2
in which the one-phonon transition is of order (1/K) and the
direct transition from the two-phonon state is of order (1/K?2),
so that the direct two-phonon transitions are prohibited in the
high-K limit.

Now it is clear that the phonon picture is valid and the
RPA formalism can be used to describe the precession mode
microscopically, which has been done by Andersson et al [9].
The key of their work is to adopt the so-called symmetry-
restoring separable type interaction: the residual interaction
used in the RPA is constructed in such a way that the rotational
symmetry broken by the deformed mean-field Hamiltonian
is recovered. This uniquely determines the complete form of
the residual interaction, and there is no adjustable parameter
in the RPA calculation. The dispersion equation is simply
given as wS(w) = 0, where the w = 0 solution is the rotational
symmetry-restoring mode, i.e. the Nambu—Goldstone (NG)
mode, J+ = J, £1iJ;. Here and in the following we assume
the x-axis as the high-K alignment axis. The equation for
non-NG modes can be formally cast into the same form as
Wprec = K/Jy,

K
J L(eﬁ) (wprec) ’

but with microscopically defined moment of inertia,

2 2
T (@) = % Z { [ Sl - () } _

li<v E;w + Wprec

“

Wprec =

Ep_v — Wprec

However, the inertia Jf’ﬂ) (wprec) is energy dependent and
actually equation (4) is a nonlinear equation to obtain the RPA
eigenenergy. Electromagnetic transitions can be calculated as
the squared amplitudes of the RPA phonon X,. with respect
to appropriate transition operators Q;,:

B ar = (K[ Quu=ar, X} JIK)P (K> 1. (5)

Here, it should be stressed that this RPA formalism of
Andersson et al is obtained by taking the non-collective
axially symmetric limit (y =60 or —120° in the Lund
convention) of the RPA wobbling formalism of Marshalek [7].
In this way, the precession and wobbling can be considered as
similar kinds of collective excitation modes.

The results of RPA calculations for precession modes
in 7®W [5] are presented in figure 1. In this nucleus, there
are many high-K isomers observed, on which the rotational
bands exist: 11 isomers investigated are ranging from four-
quasi-particle states (2v —2m) to ten-quasi-particle states
(6v —4m). We have used the Nilsson potential as a mean
field with appropriate deformation parameters and pairing gap
parameters. Except for four cases, K™ = 187, 25%, 287, 29*,
the one-phonon excitation energies are well reproduced. As
for these four isomers, the precession energies are too small;
namely, the calculated moments of inertia are too large. We
found that the overestimation of the calculated moments
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Figure 1. Excitation energies of the one-phonon precession modes
excited on high-K configurations. Calculated ones are denoted by
filled circles connected by solid lines, and experimental ones by
crosses. Taken from [7].

of inertia is due to the proton contributions in these four
configurations, which include the 7w [541]1/27 Nilsson state
originating from the why; high- j decoupled orbit. Apparently
the contribution from this orbit is overestimated in the present
calculations, see [7] for more detailed discussions.

As for the electromagnetic transitions, one can directly
compare the calculated and measured transition probabilities,
but here it is compared in a different way. As is well
known, the rotor model gives simple formula for transition
probabilities, e.g. equation (3) for B(E?2). Thus, by using the
asymptotic forms of the Clebsch—Gordan coefficients, B(E2)
and B(M 1) are parameterized in the high-K limit as,

15 1
B(E2:K+1— K)ot & EEQ%, (6)

3
BM1: K +1 = K)o~ o (3x -gr)*’K. (D

On the other hand, they are calculated by equation (5) in
the RPA formalism. By equating these two expressions, we
define Q moment or gx — gg factor calculated within the
RPA. Namely, the results of RPA calculations have been
parameterized in the same way as the rotor model, and they
are compared with experimentally extracted ones in figure 2
for B(M1). In this figure, the results of the simple mean-field
approximation are included, namely using gx calculated as
(x)/{Jx) (uy is the M1 operator) with each high-K state,
and a common value of gy calculated in the same way but
with the ground state. As it is clearly seen in figure 2, the
RPA calculation gives a much better description of B(M1)
values. As for the E2 transitions, there is no experimental data
available, but by comparing the calculated RPA QO moments
with the mean-field estimate of Q moments it is found that
they coincide well except for four configurations, which
include the he,, decoupled orbit (the figure is not shown,
see [7]).

The results for the excitation energies and transition
probabilities indicate that the high-K rotor model picture
is realized if the model parameters, moment of inertia, Q
moment and g-factors, are calculated appropriately by means
of the RPA. This fact can be naturally understood by using
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Figure 2. (gx — ggr)-factors for high-K precession bands. Those
calculated by the RPA are denoted by filled circles connected by
solid lines, while those by the mean-field approximation by filled
triangles connected by dashed lines. Those extracted from the
experimental data are shown by crosses. Taken from [7].

an adiabatic approximation studied in [10, 11]; i.e. in this
approximation, Xgrec ~ (J, + Ki®,)rpa/v/2K , while the NG
mode is Xng = J_/+~/2K. By using this form it is easy to
confirm, for example, (Qo)mean-fiela = (Qo)rpa; the situation
is more complicated for the g-factors, see [7] for more detailed

discussions.

3. Out-of-band transition of a wobbling phonon

Now let us come to the case of the wobbling mode. It has
been shown that the RPA calculation well corresponds to
the rotor model picture in the case of precession, especially
for B(E?2). It can be shown that a similar consideration in
terms of the adiabatic approximation can be also applied
for the wobbling mode. However, the B(E2) value of our
RPA wobbling calculations in Lu nuclei was too small, by
about 1/2 — 1/3, compared with the experimental data, whose
magnitudes are well reproduced by the rotor model. This has
been a serious problem, see figure 3 and [3, 4]. Considering
the results of the precession modes, however, it is difficult
to understand the discrepancy between the results of the
RPA calculation and the rotor model. Therefore, we looked
for the reason why the RPA calculation gave such smaller
values.

Two reasons have been found: one is related to the model
space of the RPA calculations, and the other is to the definition
of the triaxiality parameter y in the Nilsson potential. As for
the model space, we used the 5-major shells but it was not
enough; this effect, however, is only about 20% and not the
major effect. More important is the value of the y parameter.
It is believed that the ¢ value is about 20° in the TSD bands
in the Lu region. We have used 20° for the y in the Nilsson
potential, y (Nils) = 20°. It is found, however, that the y -value
defined by the density distribution, y (dens), is only about
10°. Here, y(dens) is defined by the expectation values of
the quadrupole operators (the Lund convention for sign of y),
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Figure 3. Upper panel: the relation between y (Nils) and y (dens)
for the TSD band in '®*Lu. Lower panel: comparison of the
out-of-band to in-band B(E?2) ratios; symbols are the experimental
data, three curves are corresponding results of RPA calculations,
in which the dashed line is the result of [3], see text for detail.
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Of course, the triaxiality of the rotor model should be that
of the density distribution. By using an assumption for
moments of inertia, J, = J,, in the triaxial rotor model,
the out-of-band to in-band B(E?2) ratio depends on the y
parameter like B(E2)qu/B(E2)in tanz(y +30°) [12]. Even
in general cases with J, # 7, this y-dependence follows
approximately. Then it is easy to see that the difference of
this ratio at y = 10 and 20° is about factor two. The y value
corresponding to y (dens) = 20° in the density distribution is
about y (Nils) ~ 30° in the Nilsson potential (see figure 3).
The results of the RPA calculation using different y-values
are shown in figure 3, where the relation between y (dens) and
y (Nils) is also depicted in the upper panel. The dashed line
with the model space of the 5-major shells is the result of [3].
As is shown in the figure, if one uses the full model space
and y (Nils) = 30°, the B(E?2) ratio comes up to the correct
magnitude just as in the case of the rotor model [13].

The discrepancy between y (Nils) and y (dens) is just a
matter of definition, see e.g. appendix of [14]. For the pure
harmonic oscillator potential, the definition of y (Nils) gives

-1 \/_(w\_wx)

2w, a)x—a)y

y (Nils) = tan ©)]

The self—consistency of the potential (Mottelson condition),
(Za 1(x1< )a) X l/a)k (k=x,y, 2), is approximately satisfied
in the Nilsson potential, and then by equation (8),

V3 (/] —1/e7)
2/w? —1/w? — l/wg’

y (dens) ~ y (self) = tan~! (10)

where y (self) is the triaxiality based on the shape (ellipsoid)
of an equi-potential surface for the anisotropic harmonic
oscillator. In this way, the relation between y (Nils) and
y(dens) in the upper panel of figure 3 can be naturally
understood.

4. Summary

The RPA precession formalism by Andersson et al can
be obtained by a non-collective axially-symmetric limit of
the RPA wobbling formalism by Marshalek. By using this
formalism, it is shown that the RPA calculation gives fairly
good agreements for both the excitation energies and B(M 1)
transitions for the precession phonons on high-K isomers
in '"W. This result can be interpreted by an adiabatic
approximation, and shows a good correspondence between
the RPA calculation and the rotor model; especially B(E2)
or Q moments, and B(M 1) or g-factors [7].

There is an important feed back to the calculation of
recently observed nuclear wobbling motions. The problem
of small B(E2) ratios in our previous RPA calculations
can be solved if one uses a proper value of the triaxiality
parameter y (dens) ~20° in the density distribution. This
does not completely solve the problem, however, because the
Nilsson—Strutinsky calculation gives minima at y (Nils) ~ 20°
in the Nilsson potential, which corresponds to y (dens) ~
10°. Thus, it raises a more fundamental question: why
the Nilsson—Strutinsky calculation does not provide enough
triaxiality, which is required for explaining the measured
B(E?2) ratio of the wobbling phonon band. Finally, it is shown
that the RPA can describe the 3D rotational motion (in the
small amplitude approximation) at least at the same level
as the rotor model. In other words, the rotor model may be
justified by the microscopic RPA calculations.
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