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The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band
of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction
of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase approximation
(RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes
in '"W: the excitation energies, B(E2) and B(M 1) values. We show that the excitations of such a specific type
of rotation can be well described by the RPA formalism, which gives new insight into the wobbling motion in
the triaxial superdeformed nuclei from a microscopic viewpoint.
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I. INTRODUCTION

Rotation is a typical collective motion in atomic nuclei.
It manifests itself as a rotational band, a sequence of states
connected by strong electromagnetic (e.g., E2) transitions.
Most of the rotational bands observed so far are based
on the uniform rotation about an axis perpendicular to the
symmetry axis of axially symmetric deformation. The well-
known ground state rotational bands and the superdeformed
rotational bands with axis ratios about 2:1 are typical ex-
amples of this type of rotational motion. Quite recently,
exotic rotational motions, in contrast to the normal ones
mentioned above, have been under discussion. They are
generally neither uniform nor rotating about one of three
principal axes of deformation, and they clearly indicate the
possible existence of three-dimensional rotations in atomic
nuclei. The recently observed wobbling rotational bands
[1-5] and the chiral rotation/vibration bands [6-9] are such
examples.

Such exotic rotations are very interesting because they
give hints to answering a fundamental question: How does
an atomic nucleus rotate as a three-dimensional object? They
may also shed light on collective motions in nuclei with triaxial
deformation, which are characteristic in these rotational bands
and are very scarce near the ground state region. Although the
triaxial deformation is crucial for those exotic rotations, it is not
anecessary condition for three-dimensional rotations to occur.
For example, the chiral rotation is a kind of “magnetic rotation”
or “tilted axis rotation” [10], where the axis of rotation is
neither along a principal axis of deformation nor in the plane of
two principal axes, but is pointing inside a triangle composed of
three principal axes. In the case of the typical magnetic rotation
observed in the Pb region, the so-called shears band [10], the
deformation is axially symmetric and weakly oblate. Similarly,
one can think of an axially symmetric limit of the wobbling
motion: the so-called “precession band”, which is nothing but
arotational band excited on a high-K isomeric state, in analogy
to the classical motion of the symmetric top. The main purpose
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of the present paper is to investigate the precession band from
a microscopic viewpoint.

In recent publications [11,12], we studied the nuclear
wobbling motions associated with the triaxial superdeformed
(TSD) bands in Lu and Hf isotopes on the basis of the
microscopic framework: the cranked mean-field and the
random-phase approximation (RPA) [13-19]. It has been
found that RPA eigenmodes, which can be interpreted as the
wobbling motions, appear naturally if appropriate mean-field
parameters are chosen. The deformation of the mean-field is
large (e, > 0.35) with a positive triaxial shape (y ~ +20° in
the Lund convention), i.e., mainly rotating about the shortest
axis, and the static pairing is small (A, , < 0.6 MeV), both of
which properties are in accordance with the potential energy
surface calculation [20]. It should be stressed that the solution
of the RPA eigenvalue is uniquely determined, once the mean
field is fixed, as long as the “minimal coupling” residual
interaction is adopted (see Sec. III). Therefore, it is highly
nontrivial that we could obtain wobbling-like RPA solutions
at correct excitation energies. However, the detailed rotational
frequency dependence of the observed excitation energy in Lu
isotopes, monotonically decreasing with frequency, could not
be reproduced, and the out-of-band B(E2) values from the
wobbling band were considerably underestimated in our RPA
calculation.

In the axially symmetric deformation with a uniform rota-
tion about a principal axis, the angular momentum of high-spin
states is built up either by a collective rotation, i.e., the rotation
axis is perpendicular to the symmetry axis, or by alignments
of single-particle angular momenta, i.e., the rotation axis is
the same as the symmetry axis. Thus, four rotation schemes
are possible: oblate noncollective, prolate collective, oblate
collective, and prolate noncollective rotations, corresponding
to the triaxiality parameter y = 60°, y = 0°, y = —60°, and
y = —120° in the Lund convention, respectively. The axially
symmetric limit of the RPA wobbling formalism can be
taken for the so-called noncollective rotation schemes with
oblate or prolate deformation, namely y = 60° or y = —120°
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cases. In both cases, long-lived isomers are observed, but
the rotational bands starting from the isomers have not been
observed in the oblate noncollective case. On the other hand,
the high-K isomers and the associated rotational bands have
been known for many years in the Hf and W region with
prolate deformation. Making full use of the axial symmetry, the
RPA formalism has been developed [21-24], which is capable
of describing the rotational band based on the high-K state
as a multi-phonon band, i.e., the precession band. Recently,
the same kind of rotational bands built on high-K isomers
have also been studied by means of the tilted axis cranking
model [25-28].

In this paper, we would like to make a link between the
two RPA formalisms, the one for the (triaxial) wobbling and
the one for the (axially symmetric) precession motions. In
fact, we will show that the precession mode can be naturally
obtained as the axially symmetric limit of the noncollective
rotation in the cranked-RPA description for the wobbling
mode. Moreover, applying the formalism to a typical nucleus
178W, where many high-K isomers have been observed, allows
us to study the properties of the precession bands in detail, not
only the excitation energies but also the B(E2) and B(M1)
values. This kind of study for the precession band sheds new
light on understanding the recently observed wobbling motion.
For completeness of explanation in the following sections, we
review the wobbling and precession bands in the rotor model
in Sec. II, while in Sec. III the RPA wobbling formalism and
the connection to the precession band in the axially symmetric
limit are considered. The result of calculations for "W is
presented and discussed in Sec. IV. Section V is devoted to
some concluding remarks. Preliminary results for the magnetic
property of the precession band were already reported [29].

II. WOBBLING AND PRECESSION IN SCHEMATIC
ROTOR MODEL

The macroscopic rotor model is a basic tool for studying
the nuclear collective rotation, and its high-spin properties
have been investigated within a harmonic approximation
[30] or by including higher order effects [31-33]. In this
section, we review the consequences of the simple rotor model
according to Ref. [30]. We use 7z = 1 unit throughout this
paper. The Hamiltonian of the simplest triaxial rotor model is
given by

N "
Tot 2jx+2j +2jz,

where [I’s are angular momentum operators in the body-
fixed coordinate frame, and the three moments of inertia,
Jy» Jy, and T, are generally different. We assume, for
definiteness, the rotor describes the even-even nucleus (integer
spins).

Following the argument of Ref. [30], let us consider the
high-spin limit, / > 1, and assume that the main rotation is
about the x axis; namely, the yrast band is generated by a
uniform rotation about the x axis. Then, the excited band at
spin I can be described by the excitation of the wobbling
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phonon,

xt b = Lilv—l— LI@
Y2 T V2I
where a and b are the amplitudes determined by the eigenmode
equation, [H, X f ] = wwor(1)X I at each spin / in the

wob wob?
harmonic approximation. The resultant eigenvalue wyo,(1) is

given by the well-known formula

owon(D) = 1/(1/ Ty = 1/ T/ T = 1))

@

(T = I)Tx = T2)
= a)rot(l ) - s (3)
NAVE
with the rotational frequency of the main rotation
1
(1) = — (€]

7

It should be noted that the triaxial deformation of the
nuclear shape is directly related to the intrinsic quadrupole
moments, e.g., tany = —v/202 /0, but does not give a
definite relation between three moments of inertia. One has to
introduce a model, e.g., the irrotational flow model, in order
to relate the triaxiality parameter y of deformation to three
inertia. However, the simple irrotational moment of inertia
is inconsistent with the existence of wobbling mode if the
positive y shape is assumed, since then [J, > J;, J; and
therefore the wobbling frequency (3) becomes imaginary.

The spectra of the rotor near the yrast line are given in the
harmonic approximation by

IJ+1) 1
g tewD(rt3). O

and are composed of two sequences, the Al = 2 horizontal
one,

Ew(I,n) =

EM(I) = Ex(I,n), I=nn+2n+4,... (6

with given phonon numbers n =0, 1,2, ..., and the Al =1
vertical sequence,

EY) = B 1 — 1), T=Ilo+1,Ig+2,... (7

with given bandhead spins [y =0, 2,4, ..., both of which
are connected by E2 transitions. The horizontal sequences
are conventional rotational bands with transition energies
E, ~ 2wy, and the Al = —2 in-band B(E2) values are
proportional to the square of the quadrupole moment about
the x axis. The vertical sequences look like phonon bands
with transition energies E, ~ (Wwob + Wror), and the Al = —1
vertical B(E2) values are O(1/1I) smaller than the horizontal
B(E?2). These features are summarized schematically in Fig. 1.
In fact, the AI = —1 out-of-band transition was crucial to
identifying the wobbling motion in Lu isotopes [1]. If the
wobbling-phonon energy wywob (1) is larger than the A7 = 2 ro-
tational energy AE,n(I) = Exq(I + 1,n) — E;(I — 1,n) =
21 + 1)/ J,, both the Al = +1 transitions are possible. The
Al = —1 transition is much stronger than the A/ = +1 one
for the positive y shape, and vice versa for the negative y
shape, which also supports that the TSD bands in the Lu region
have positive y shape.
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FIG. 1. Rotational spectra of a triaxial rotor Hamiltonian. Hori-
zontal rotational bands are connected by solid lines; vertical phonon
bands, by dotted lines.

Next, let us consider the precession band [22] built on a
high-K isomeric state. In this case, the spin I, & I = K is
composed of single-particle alignments, and the deformation is
axially symmetric about the x axis. Since no collective rotation
exists about the x axis, the rotational energy spectra are given
simply by [30]

1
Enighes (1) = 771 +1) = K7, ®)
where J, is the moment of inertia with respect to the
perpendicular axis (J, = J, = J;). The excitation energy of
this band can be rewritten, by putting I = K + n, as

Enign-k (1) = 0prec (n +3+ ”(”I: 1)) .o
with
K
Oprec = j—l, (10)

leading to a harmonic phonon band structure with a one-
phonon energy (10), when K is sufficiently large. The spectra
in this limit are drawn in Fig. 2. The harmonic picture
holds not only for the energy spectra but also for the
B(E2) values; for example, by using B(E2) o (I K20|I; K)?,
one finds, in the leading order, B(E2;n — n — 1) «x 3(n/K)
and B(E2;n — n —2) x (3/2)(n(n — 1)/K2), where n =
I — K is the number of the precession phonon quanta,
so that the two-phonon transition is hindered when K is
large.

Now, let us discuss the relation [22] between the wobbling
phonon energy (3) and the precession phonon energy (10). By
putting J, = J; = J, with keeping J, > J,, J; in Eq. (3),
the wobbling frequency reduces to

wwob(I) = — — wrot(1). (11)

JL
Namely, at the bandhead [ = K, the precession phonon
ENErgy Wprec = Wwob + Wror cOincides with the vertical AT =1
transition energy in the wobbling spectra in such a case.
This result can be interpreted to mean that each horizontal
band (6) in the wobbling spectra disappears (no collective
rotations), leaving one vertical band, whose transition energy
is wprec. This interpretation is possible in the microscopic
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FIG. 2. Precession bands excited on high-K isomeric states. All
|AI| = 2 horizontal sequences shown in Fig. 1 disappear, leaving
only one |Al| =1 vertical band in the case of the noncollective
rotation.

cranked-RPA description [14] in the next section, where the
rotational frequency w;y is replaced by the cranking frequency
w.; about the x axis and the moment of inertia about this axis
is defined by J, = (J;)/w.:; i.e., it is the kinematic moment
of inertia containing the contribution from the quasiparticle
alignments, so that the condition J, > J,, J; can be satisfied.
The cranking frequency w,;, is a redundant variable in this case
of the noncollective rotation, but all physical observables do
not depend on it. In this way, both the wobbling and precession
bands can be treated in a unified manner in the framework of
the RPA wobbling formalism, which is shown in more detail
in the next section (see Sec. III B).

III. AXTALLY SYMMETRIC LIMIT OF RPA
WOBBLING FORMALISM

A. Minimal coupling and RPA wobbling equation

Microscopic RPA theories for nuclear wobbling motion
have been developed in Refs. [14,15,17]. The most important
among them is that of Marshalek [14], where the transforma-
tion to the principal axis frame (body-fixed frame) is performed
and the theory is formulated in that frame. Moreover, it is
shown that the RPA equation for the wobbling mode can
be cast into the same form as Eq. (3) if three moments of
inertia are replaced with those appropriately defined in the
microscopic framework; we call this equation the wobbling
form equation. The adopted microscopic Hamiltonian in
Ref. [14] is composed of the spherical mean-field and the
quadrupole-quadrupole interaction (with the monopole pairing
if necessary). In Ref. [17], however, it was pointed out that the
RPA equation could not be reduced to the wobbling form
equation if a most general residual interaction is used. A
closer look into the argument in Ref. [17] shows, however,
that the following “minimal coupling,” being used as a residual
interaction, leads to the wobbling form equation as the RPA
dispersion equation.

In Marshalek’s theory the rotational Nambu-Goldstone
(NG) modes (or spurious modes as conventionally called),
Jy and J,, play a crucial role. The RPA guarantees the
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decoupling of these modes if the self-consistency of the mean
field is satisfied in the Hartree-Fock sense. In many cases,
however, non-self-consistent mean fields are necessary; for
example, the deformation is more properly determined by the
Strutinsky procedure than by the Hartree-Fock calculations
with simple interactions, or one wants to study the system
by hypothetically changing the mean-field parameters, as has
been done in our previous calculations [12] for the nuclear
wobbling motions. Thus, we consider that the mean field 4
rather than the interaction is given, and we look for the residual
interaction H", which fulfills the decoupling condition of
the NG modes within the RPA [34]. The same idea has been
formulated in the context of the particle-vibration coupling
theory [30], where the rotational invariance is restored by
considering the coupling resulting from a small rotation about
the x, y, or z axis. Thus the minimum requirement is what we
call the “minimal coupling” given by

1
HY == 3 bk (12)

k,l=x,y,z

Here, the Hermitian operator F; and the 3 x 3 symmetric
force-strength matrix xi; are defined as

Fi = i[h, Ji], (13)
(x " Da = —(@Illh, Jil, JI®), (14)

with the mean-field vacuum state |®) (the Slater determinant if
no pairing is included), on which RPA eigenmodes are created.
If the mean field is given by the anisotropic harmonic oscillator
potential, the minimal coupling leads to the doubly stretched
Q" Q" interaction combined with the Landau prescription
[21,35-41]. One has to include the monopole pairing inter-
action in realistic calculations. It should be stressed that the
minimal coupling can be used for any type of mean fields, e.g.,
the Woods-Saxon potential.

For the wobbling modes in the yrast region, the mean-field
vacuum state |®(w.,)) is obtained as the lowest eigenstate of
the cranked mean-field Hamiltonian,

W o=h— gl (15)

as a function of the cranking frequency w. Assuming the
signature symmetry (with respect to a & rotation about the x
axis) of the mean field and the conventional phase convention
that the matrix elements of the single-particle operators iJ,
and J, are real in the mean-field basis, it can be shown that
the force-strength matrix yj; is diagonal. The excitation of
the wobbling phonon corresponds to the vertical Al = £1
transitions in Sec. II, therefore only the part of the RPA
equations which transfer the signature quantum number by
o =1 is relevant; ie., only k,/ =y,z parts of H™ in
Eq. (12) contribute. It is now straightforward to follow the
same procedure as has been done in Ref. [14], but with the
modification that the quadrupole field of the interaction is
replaced with F; in Eq. (12). Then one finds that the same
RPA dispersion equation can be derived as
2 21| Ay(w)
(0° — ) Bo()

B (w)
A ()

=0, (16)
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where

Av(w) =1- wcrjy(a)) + wjyz(w)a
A(w)=1- a)cr\7z(a)) + a)jyz(w)a

(17)
By(w) = U)jy(a)) - wcrtsz(a))a
Bz(w) = w\7z(a)) - wcrjyz(w),
with the following definitions:
I = (P(wer) | Jx [P (wer))
= D20, (w),
n<v
2E . Jy(uv)?
Ty(w) = Z m,
n<v v
2E, J.(uv)? (18)
_ vz
T (@) = ; £~ (r

20Jy(uv)J (1)

Jvz(w) ; E/%v _ (a))Z :
In these expressions, w is the phonon excitation energy,
E, =E,+ E, are two-quasiparticle energies with o =
1, and Jy(uv) = (uvli Jy|P)(J-(uv) = (uv]J;|P)) are two-
quasiparticle matrix elements of the operator i J, (J;), which
are associated with the vacuum state |®(w,,)) and determined
by the mean-field Hamiltonian 4’ in the rotating frame. It is
now clear that once the mean-field Hamiltonian is given and
the vacuum state |®(w,,)) is obtained, the RPA eigenmodes
can be calculated without any ambiguity. This is precisely the
consequence of the minimal coupling given by Eq. (12).

The rotational NG mode appears as a decoupled w = w,
solution in the RPA dispersion equation (16);

1 1
It = ﬁ(z Jy + J)Rea = ﬁ(’ JOrea,  (19)

J.=J,+iJ,, (x-axis quantization), (20)

where the subscript RPA means the two-quasiparticle transfer
part (the particle-hole part if no pairing is included) of
the operator. Note that it is normalizable, [I", I''lrps = 1,
because (®|[J;,iJ,]|®P) = (®|J;|P) =1 # 0. The cranked
mean field (15) describes the rotating state, which has an
angular momentum vector aligned with the x axis, and this
NG mode plays a role to tilt the whole system by changing
the x component of the angular momentum by —1 unit. The
reason why the NG mode has a finite excitation energy is that
there is a cranking term in the Hamiltonian (15) (the Higgs
mechanism).

Finally, Marshalek [14] has shown that the non-NG part of
the RPA dispersion equation (16) is reduced to the wobbling
form, where the rotational frequency w;o is replaced by the
cranking frequency wg:

[~7x _Jv(eff)(a))][\zc _Z(eff)(w)]
t7}{eff) () k7Z(eff)(w)

(@) = (wer)?

. 2D

014306-4



HIGH-K PRECESSION MODES: AXIALLY SYMMETRIC. ..

if three moments of inertia are replaced with microscopically
defined ones in the following way:

L — <(D(a)cr)| Jx |cb((z)cr)>

\-7X ==
Wer Wer
TEP(@) = Jy(@) = Tre@) 4,@) (22)
: B.()’
. A.()
TN (w) = T (0) — Tye(@ Byw)’

Since the y- and z-effective inertia are w dependent, the
equation is non-linear and they are determined only after
solving it.

As for the electromagnetic transition probabilities, Mar-
shalek proposed a 1/I-expansion technique by utilizing the
perturbative boson expansion method [13]. The Al = F1 E2
and M1 vertical transitions from the one-phonon wobbling
band to the yrast band, discussed in Sec. II, can be calculated
within the RPA, which is the lowest order in 1/17, as

B(E21 1 1)~ [(®[Qaz1, X p]I®)17,  (23)

BMUT£1— D)~ [(®l[ig1, Xy IO, (24)

Wob

where X ‘wa is the wobbling phonon creation operator, and the
E?2 and M1 operators quantized with respect to the x axis,

0ri1 = %(Qé? +0%)), (25)
st = i%(iuy F 1), (26)

are introduced (see also Ref. [19]). Here Q(i) (K=0,1,2)
are electric quadrupole operators (z-axis quantization) with a

good signature,
(21) = ,/ eZ(xz)(”)

22 = l\/ - €Z(xy)(”)

and i (k = x, y, z) are magnetic dipole operators,

A
[3 «
= i §_Ij 8 +8s),. (t=mv). (28)

27

B. Axially symmetric limit and RPA precession equation

If the deformation is axially symmetric about the x axis, the
angular momentum is generated not by the collective rotation,
but by the alignment of the angular momenta of quasiparticles
along the symmetry axis. The mean-field vacuum state |®), a
high-K state, is a multiple-quasiparticle excited state, and its
spin value is the sum of the projections, €2,,, of their angular
momenta on the symmetry axis; ] = K = cho) Q,, i.e., the
time reversal invariance is spontaneously broken in |®). In
this case, the cranking term in Eq. (15) does not change the
vacuum state |®), so that the cranking frequency w is a
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redundant variable. All observables should not depend on ;.
It is reflected in the fact that the quasiparticle energies linearly
depend on the rotational frequency:

E (a)cr) = wch (29)

where E 2 are quasiparticle energies for the non-cranked mean-
field Hamiltonian 4. Since the eigenvalue of J,, €2, is a good
quantum number, it is convenient to rewrite the RPA dispersion
equation (16) in terms of the matrix elements of J rather than
iJy and J.. After a little algebra, the equation decouples into
two equations,

(0 £ wer)St1(w £ wer) =0, (30)

where the functions S,(w) with p = £1 determine the AQ =
41 solutions, respectively, and are given by

2
Su0) = 3 Z { (Ewy £ @cr)[J£ ()]

E,Tw;—w

nw<v

_ (E;w + wcr)l-]I(//LV”2 }
Eu,v F @er + @ )

(€29}

The precession is a AQ2 = +1 mode, as is clear from the
rotor model in Sec. II, and then only the Al = —1 E2 and
M transitions are allowed; i.e., their Al = +1 probabilities
vanish in Egs. (23) and (24) because the two RPA transition
amplitudes, (P[0, X! 1|®) and (®[[Q%;), X! ,1|®), are
the same in their absolute value with the opposite sign; a
corresponding relation holds for the M1 amplitudes.

On the other hand, the y and z inertia are the same due to the
axial symmetry about the x axis, and then, just like Eq. (11),
Eq. (21) reduces to

(eff)( ) Foe (AQ==%l), (32)

where I = (®|J,|P) is denoted by K, and the perpendicular

inertia J (eff)(a)) =J y(eff)(w) = J0(w) is simply written as
T (@) = Ji@) F Tel@) (AQ==%1),  (33)
with 7 (0) = J,(0) = J.(o).

The vibrational treatment of the rotational band built on
the high-K isomeric state in terms of the RPA has been
done for a harmonic oscillator model in Refs. [21,22], and
for realistic nuclei by employing the Nilsson potential in
Ref. [23], followed by calculations with the Woods-Saxon
potential in Ref. [24]. The residual interaction adopted in
Refs. [23,24] is derived by applying the vibrating potential
model of Bohr-Mottelson [30] to an infinitesimal rotation
about the perpendicular axis, and is equivalent to the minimal
coupling (12). In the axially symmetric case,

Hy = —3k(F{F, + F'F.), (34)
with F being defined by using J1 in Eq. (20),

- 1
Fy = ;lc_[h’ il we=—2(@Illh, T, JI®). (35)

Note that the mean-field state |®) is now a multi-quasiparticle
excited state for the noncranked mean-field Hamiltonian /4, and
S0 w¢r does not appear, although it can be used as the “sloping
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Fermi surface” to obtain optimal states [42]. The cranking
procedure is totally unnecessary in this approach.

The resultant RPA dispersion equations are given for the
parts associated with the fields F. separately,

w S+1(w) =0, (36)
where the functions S (w) are defined by
1 E) |J=(uv)*  ED |5 (uv)?
S == = - , (37
£1(@) ZZ{ E), —w E}, +w 37

n<v

which turn out to be the same functions as Eq. (31) be-
cause of the property (29) of quasiparticle energies in the
noncollective rotation scheme. It is worth mentioning that
Si1(w) = —S_1(—w), so that AQ = —1 modes are obtained
as negative energy solutions of the AQ = 41 dispersion
equation and vice versa. For the physical AQ2 = 41 modes,
the eigenenergies of the wobbling dispersion equation (30) and
the precession one (36) are related as

Wywob = Wprec — Wer- (33)
By comparing it with Eq. (32), we obtain
K

—eD 39)

Wprec = j(eff) ,
1

with jf_eff) being written as

70 _ lz | (uv)[?

L
2 EY, — Wprec

|J_(uv))?
= @)
o + @prec

n<v

which is the microscopic RPA version of Eq. (10) in Sec. II.
This jfff) does not depend on w,, while both 7, = J, =
J; and J,. in Eq. (33) do. This result can also be obtained
directly from the precession dispersion Eq. (36). Note that the
perpendicular inertia (40) reduces to the Inglis cranking inertia
(or that of Belyaeyv if pairing is included) in the adiabatic limit
Wprec —> 0.

The reason why the w.-dependent wobbling eigenenergy
and the w-independent precession eigenenergy is related in a
simple way (38) is that the RPA treatment in Refs. [21-24]
is formulated in the laboratory frame, while Marshalek’s
wobbling theory is in the principal axis frame (body-fixed
frame). The energies in the laboratory frame E™ and in the
uniformly rotating frame described by the cranked mean-field
EOR) are related by E (UR) — F@ _ Qu,, for the state which
has a projection 2 of angular momentum on the cranking
axis. Moreover, the energies in the principal axis and the
uniformly rotating frames are the same under the small
amplitude approximation in the RPA. Thus the difference
of phonon energies in (38) comes from the difference of
coordinate frames where the two approaches are formulated.
The rotational NG mode I'f (20) appears at zero energy in
the precession dispersion Eq. (36) by the same reason. The
transformation between the laboratory and the principal axis
frames have been discussed more thoroughly in Refs. [14,22].

As for the electromagnetic transition probabilities in the
precession formalism [23,24], the RPA vacuum state |RPA)
is considered to be a stretched eigenstate of the angular mo-
mentum |/ = K, M = K), because I'|RPA) = 0 for the NG
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mode (20) [I" o« (J4+)rpal- In the same way, the A2 = 41 one-
phonon precession state X;reclRPA) corresponds to |I = K +
1,M = K + 1), because I X}ree|RPA) = [T, X1 ]|RPA) =
0. Then, by using the Wigner-Eckart theorem, we obtain, for
example,
(I = K||IM(E2)||IIl =K +1)
(RPA| Q21 X}rec[RPA)
= 2K +1 . 41
+ (K+1K+12 —1|KK) @

Thus, by inserting explicit expressions of the Clebsch-Gordan
coefficients, one finds

K +2 ; )
B(E2,K+1— K) = TI@I[Qz_l, X1, (42)

BMMLK +1— K) = [(®lln1-1. X ]I, 43)

which coincide, within the lowest order in 1/ K, with Egs. (23)
and (24) in the wobbling formalism.

IV. RESULT AND DISCUSSION

A. Calculation of precession bands in W

In the previous papers [11,12], we studied the wobbling
motions in the triaxial superdeformed bands in Hf and
Lu isotopes. As demonstrated in the previous section, the
precession mode can be described as an axially symmetric
limit of the RPA wobbling formalism. Thus we have performed
calculations of the precession bands in '*W, for which
the richest experimental information is available [43—45].
Exactly the same wobbling formalism is used, but taking the
prolate noncollective limit suitable for high-K isomers, i.e.,
the triaxiality parameter y = —120° in the Lund convention.
The first result for this nucleus, concentrating on the magnetic
property, was reported already in Ref. [29].

The procedure of the calculation is the same as in
Refs. [11,12,29]. The standard Nilsson potential [46] is
employed as a mean field with the monopole pairing being
included,

h=hyis(€2, ) = Y Ac(Pl+P)— Y ANe. (44)

=V, =V,

Here the ¢4 deformation is neglected, and all the mean-field
parameters are fixed for simplicity. There are a few refinements
of calculation, however: (1) the difference of the oscillator
frequencies for neutrons and protons in the Nilsson potential is
taken into account, and the correct electric quadrupole operator
is used, while Z/A times the mass quadrupole operator was
used previously, and (2) the model space is fully enlarged;
Nosc = 3-8 for neutrons and 2—7 for protons, which guarantees
the NG mode decoupling with sufficient accuracy in numerical
calculations. As for point (1), Q™ ~ (Z/A) Q™ + Q™)
usually, holds for static and RPA transitional quadrupole
moments in stable nuclei, and therefore the simplification in
the previous paper was a good approximation. It is, however,
found that Q™ is appreciably smaller, by about 4—8%, than
(Z/AYQ™ + Q@) in '®W. Thus, in this paper, we make a
more precise calculation using the electric (proton) part of the
quadrupole operator.

014306-6



HIGH-K PRECESSION MODES: AXIALLY SYMMETRIC. ..

PHYSICAL REVIEW C 72, 014306 (2005)

TABLE I. Configurations assigned for high-K isomers in W [43—45], which are used in the RPA
calculations for the precession bands excited on them. The experimental values of the precession one-phonon
energy, wpee = Ex(I = K + 1) — Ex(I = K), are also tabulated in the last column. The neutron states are
1/27[5211, 5/27[512], 7/27[514], 7/27[633], 9/27[624], and 7/279[503]. The proton states are 1/27[541],
5/2%[402], 7/2*[404], 9/27[514], and 11/27[505]. The bold letters indicate the o, proton and the i3/,

neutron quasiparticles.

K™ Neutron configuration Proton configuration wpee(keV)
13~ 712%,7/12~ 5/2%,7/2F 164
14+ 7/2%,7/2~ 5/2%,9/2- 150
15" 712,712~ 7/2%,9/2 207
18~ 7/2%,7/27 1/2=,5/2%,7/2%,9/2~ 184
21- 5/27,7/2%,7/27,9/2F 5/2%,9/2- 362
22~ 5/27,7/2%,7/27,9/2F 7/2%,9/2 373
25+ 5/27,7/2%,7/27,9/2F 1/2=,5/2%,7/2%,9/2 288
28~ 5/27,7/2%,7/27,9/2F 1/2=,7/2%,9/27,11/2~ 328
29+ 5/27,7/2%,7/27,9/27,1/27,7/27¢ 1/2=,5/2%,7/2%,9/2~ 437
30" 5/27,7/2%,7/27,9/2F 5/2F,7/2%,9/27,11/2 559
34+ 5/27,7/27,7/27,9/27,1/27,7/27 5/2,7/2%,9/27, 11/2 621

The calculation is performed for the high-K isomeric
configurations listed in Table I; they cover almost all the
multi-quasiparticle states higher than or equal to four (more
than or equal to two quasineutrons and two quasiprotons),
on which rotational bands are observed. The quadrupole
deformation is chosen to be €, = 0.240, which reproduces
in a rough average the value Q¢ = 7.0 b for the configurations
in Table I assumed in the experimental analyses [44,45]. The
pairing gap parameters are taken, for simplicity, to be 0.5 MeV
for two-quasiparticle configurations, and 0.01 MeV for those
with more than or equal to four quasiparticles, both for
neutrons and protons. Chemical potentials A, (t = v, ) are
always adjusted so as to give correct neutron and proton
numbers. These mean that the choice of parameters in this work
is semiquantitative. As explained in detail in Sec. I, the final
results do not depend on the cranking frequency w,, at all for
the noncollective rotation about the x axis. We have confirmed
this fact numerically and used w. = 0.001 MeV in actual
calculations. (Note that the RPA wobbling formalism requires
a finite frequency in numerical calculations.) No effective
charge is used for the E2 transitions, and g™ = 0.7g(fr®
is used for the M1 transitions as usual.

We have checked the dependences of the results on the
variations of the deformation parameter €, and pairing gaps.
Those on the pairing gaps are shown in Fig. 3. In this figure,
the excitation energy o and the RPA transition amplitude for
the electric Q%) operator (28), Q = [([Q%,, X}rec])|, Which
is a measure of the E2 collectivity, for the precession modes
excited on the K =25% and K = 30" configurations, are
shown as functions of the pairing gap, A = A, = A, (the
common value for protons and neutrons). For reference sake,
the results are also included for the y vibrations on the
ground states, i.e., the AK = +£2 vibrational mode excited
on the y = 0° prolate mean field (without cranking), for
166 168y} and !8Hf nuclei. Note that the meaning of the
operator Q(ZE) is different for y = —120° and y = 0° shapes,
so that the comparison of the magnitude of the amplitude

Q is not meaningful between the precession mode and the
y-vibrational mode. As stressed in Sec. III A, the precession
mode is calculated without any ambiguity once the mean field
is fixed; we have just used the same parameters explained
above with the exception that the pairing gaps are varied. The
situation for the y vibration is different; one has to include

1.4 T T T T
1.2 :--I§éﬁ'f;',; """""""""""""""""""""""""""""
= Lor —
§ 0.8F 165y} T A
~— —_——————- — -
3 0.6 ///wsEr. T
iy
< 0.4L "*W:prec 30" s Ny
s
0.2 i
18W: prec 25+ /
0.0 L L L )
0.8 T T ‘ T T
I8W: prec 25+ \\
0.-6r \\ 166 |
— Er:
o 18W: prec 30" S~ v
2 0.4F “____,,T‘:
O) 2
178Hf: R - :__/--:¢-,—_
_______._---"’/,/’
02—y |
Y
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0
A(MeV)

FIG. 3. Dependence of numerical results on the pairing gap
parameter A = A, = A,. Upper panel shows the excitation energies;
lower panel, the RPA transition amplitudes for the electric Q'
operator (28). Solid curves show results for the precession modes
excited on the 25 and 30* high-K states in '"®*W; dotted, dashed,
and dot-dashed curves represent those for the y vibrations in '®°Er,
168y, and "8 Hf, respectively.
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TABLE II. Mean-field parameters used in the calculation for the
y vibrations on the ground states (y = 0°), and observed excitation
energies of y vibrations [47]. €, values are taken from Ref. [48],
where they are deduced from the measured B(E?2: 0; — 2;)
values. Even-odd mass differences are calculated by the third-order

difference formula using the binding energy data in Ref. [49].

Nucleus € A, (MeV) Ar MeV)  of? (MeV)
166y 0.272 0.966 0.877 0.786
188Yb 0.258 1.039 0.983 0.984
178Hf 0.227 0.694 0.824 1.175

components other than the minimal coupling, (12) or (34).
We use the K = 2 part of the doubly stretched Q” Q" force,
and the force strength is determined in such a way that the
calculations with adopting the even-odd mass differences as
pairing gap parameters reproduce the experimental energies
of the y vibration; see Table II for the parameters and
data used. Then, with the use of the force strength thus
fixed, calculations are performed while varying the pairing
gaps.

As clearly seen in Fig. 3, the reduction of pairing gaps
makes the excitation energies of y vibration change in various
ways depending on the shell structure near the Fermi surface;
i.e., the distribution of the AQ2 = +£2 quasiparticle excitations,
which have large quadrupole matrix elements. The energy
becomes smaller and smaller in the case of '%Er, and finally
leads to an instability (@, — 0); accordingly, the transition
amplitude Q diverges. No instability takes place in the case
of 1%¥Yb, and the excitation energy decreases with decreasing
A, while it is almost constant for the y vibration in !7Hf.
However, the transition amplitudes Q reduce by about 40-60%
with decreasing A except for 'Er. These are well-known
features for the low-lying collective vibrations; namely, the
collectivities of the vibrational mode are sensitive to the
pairing correlations and especially enhanced by them. In
contrast, for the case of the precession modes, the excitation
energies are stable and transition amplitudes are surprisingly
constant against the change of the pairing gap. This is a
feature common to the wobbling mode excited on the triaxial
superdeformed band [12]. Although both the precession (or
the wobbling) and the y vibration are treated as vibrational
modes in the RPA, the structures of their vacua are quite
different; the time reversal invariance is kept in the ground
state while it is spontaneously broken in the high-spin intrinsic
states. Since the precession or the wobbling is a part of
rotational degrees of freedom, this symmetry-breaking may
be an important factor to generate these modes. It should
be mentioned that the transition amplitude Q for '®Er leads
to about a factor of 2 larger B(E2: 2;“ — 02,“) value than
the observed one in the present calculation, in which the
model space employed is large enough. The RPA calculation
overestimates the B(E?2) transition probability for the low-
lying y vibration if the Nilsson potential is used as a mean field
and the simple pairing plus Q” Q" force is used as a residual
interaction [50].

There are many RPA solutions in general, and it is not
always guaranteed that the collective solution exists. In some
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10 15 20 25 30 35

FIG. 4. Excitation energies of the one-phonon precession modes
excited on high-K configurations. Calculated energies are denoted by
filled circles connected by solid lines; experimental data, by crosses.
Data are from Refs. [44,45].

cases, collective solutions split into two or more, whose
energies are close, and the collectivity is fragmented (the
Landau damping), or the character of the collective solution is
exchanged. Moreover, in the case of precession-like solutions,
the 2 = =1 modes interact with each other, as shown in
Ref. [23]. In fact, when the deformation is changed, it is
found that the precession mode onthe K™ = 15% configuration
disappears for €, > 0.250, and that on the K™ = 14~ splits
into two for €, > 0.245. Similar situations also occur when
changing the pairing gap parameters in a few cases. Apart
from these changes, the results are rather stable against the
change of the mean-field parameters. The fact that we have
been able to obtain collective solutions for all the cases listed
in Table I indicates that our choice of mean-field parameters
are reasonable if not the best.

Figure 4 presents the calculated and observed relative
excitation energies of the first rotational band member,
E;—x+1 — Ej—k, i.e., the one-phonon precession energies.
Corresponding perpendicular moments of inertia, Eq. (39),
are shown in Fig. 5, where the contributions to the inertia from
protons and neutrons are also displayed. Our RPA calculation
reproduces the observed trend rather well in a wide range
of isomeric configurations, from four- to ten-quasiparticle
excitations. This is highly nontrivial because, as stressed in
Sec. III, we have no adjustable parameter in the RPA for
the calculation of the precession modes once the mean-field
vacuum state is given. With a closer look, however, one finds
deviations, especially at K™ = 187, 25", 287, and 29%. The
precession energies on them are smaller in comparison with
others, but the calculated ones are too small. Low calculated
energies correspond to large perpendicular moments of inertia
as clearly seen in Fig. 5. These four configurations contain
the proton high-j decoupled orbital (i.e., with Q = +1/2)
w[541]1/27 originating from the hg,;, whose decoupling
parameter is large. Occupation of such an orbital makes the
Inglis moment of inertia, which is given by Eq. (40) with
setting wprec = 0, diverge due to the zero-energy excitation
from an occupied 2 = +1/2 quasiparticle state to an empty

014306-8



HIGH-K PRECESSION MODES: AXIALLY SYMMETRIC. ..

(12 /MeV)

160 |
178
140 w 1

120
100
80
60 -
40
20 . -
0 | | | |
10 15 20 25 30 35

FIG. 5. Moments of inertia associated with the precession bands
built on high-K configurations. The RPA effective inertia (40) are
shown by filled circles connected by solid lines, the proton part of
them by filled squares connected by dotted lines, and the neutron part
by filled triangles connected by dashed lines. The crosses are values
extracted from the experimental spectra according to the simple
relation (39).

—1/2 state. The reason for a too large moment of inertia may
be overestimation of this effect for the proton contribution
in the calculation. The large effect of this mho,, orbital
on the moment of inertia has been pointed out also in
Refs. [25,51].

Except for the case of four configurations including the
m[541]1/2~ orbital, the values of moments of inertia are
about 50-80 71*/MeV, which are smaller than the rigid-body
value, Ji; = 87.8 h2/MeV, and considerably larger than the
ground state value, Jor = 28.3 12/MeV. Here Jiig 1s calculated
by assuming the W nucleus as an ellipsoidal body with
€ =0.240 and ry = 1.2 fm, and Jy by 3/E>+. The pairing
gaps are already quenched in the calculation for more than
or equal to eight-quasiparticle (four-quasiprotons and four-
quasineutrons) configurations (K > 25%). The value 0.5 MeV
of the pairing gap used for two-quasiparticle configurations
is already small enough to make the moment of inertia quite
large. It is also noticed that the moment of inertia decreases
with increasing K, which is opposite to intuition and clearly
indicates the importance of the shell effect to the moment
of inertia [52]. In Refs. [25,44], the angular momentum
of the precession band is divided into the collective and
aligned ones; the inertia defined in Eq. (39) includes both
of them. It is shown that the collective inertia, in which
the effect of the aligned angular momentum of the high-j
decoupled orbital is removed, takes the value 50-60 h2/MeV
consistent with the other configurations. As shown in Fig. 5,
the proton contribution to the inertia is about 20-30% (except
for the four configurations above), which is considerably
smaller than Z/A but consistent with the calculated value
for the gp factor in the ground state rotational band (see
below).

As for the electromagnetic transitions in the rotational
bands built on high-K isomers, the strong coupling rotational
model [30] is utilized as a good description. The expressions
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for B(E2) and B(M 1) are well known:
B(E2: I =K+ 1— K)o

5

=T e’ O (K + 1K20|KK)? 45)
15 1 202

~ , 46
167 K e (46)

BM1:1=K+1— K

_i 2 _ 2 52 2

= 4nuN(gz< gr)"K“(K + 1K10|KK)" (47)

~ iuz (gk — gr)’K, (48)
4z "N

where, in the last lines, the Clebsch-Gordan coefficients are
replaced with their lowest order expressions in 1/K. Q¢ and
(gx — gr) can be extracted from experiments; the sign of the
mixing ratio is necessary to determine the relative sign of
them. These quantities are calculated within the mean-field
approximation,

16

Qo=\/—”— (Q20) = <Z(2x -y 2)5,”>>, (49)
gk = an — 42 <Mx>gr

K 3 un(Js) Vo3 un(Jo)e

where () means that the expectation value is taken with respect
to the high-K configuration (y = —120°), e.g., (J,) = K; and
()gr» with respect to the ground state rotational band (y =
0°). The latter expectation value is calculated by the cranking
prescription (15), with the same €, and with the even-odd
mass differences as pairing gaps. The value of gg is thus w,,
dependent, but its dependence is weak at low frequencies, so
we take the value gg = 0.227 obtained at w., — 0, which is
much smaller than the standard value, Z/A = 0.416.

On the other hand, B(E2) and B(M1) are calculated by
Egs. (23) and (24), respectively, in the RPA wobbling formal-
ism which is in the lowest order in 1/K. By equating these
expressions with those of the rotational model (46) and (48),
we define the corresponding quantities in the RPA formalism
by (K = (Ji))

167K 1 '
(Qo)rra = 5 2 ([Xpree» Q2-11), (5D
e

4r

(8 — gR)rea = |/ 37— (X e 11D (52)

Only their relative phase is meaningful, and the overall phase
is chosen in such a way that (Qg)rpa is positive. We compare
calculated values of Qg in the usual mean-field approximation
(49) and in the RPA formalism (51) in Fig. 6 for all high-K
configurations listed in Table I. These two calculated Qg’s
roughly coincide with each other, but appreciable deviations
are seen for the K™ = 187, 25T, 28, and 297" isomers. The
high-j decoupled orbital w[541]1/2~ has a large prolate
quadrupole moment, so its occupation generally leads to a

4 (px)

, (50)
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FIG. 6. Quadrupole moments Q, for high-K configurations.
Those calculated by the RPA, Eq. (51), are denoted by filled circles
connected by solid lines; those by the mean-field approximation (49),
by filled triangles connected by dotted lines.

larger value of Q. This is clearly seen in Fig. 6 even if €;
is fixed in our calculation. See Ref. [53], for example, for
the polarization effect of this high-;j orbital on Qy. Notice,
however, that the effect is even larger in the RPA calculation,
just as in the case of the excitation energy in Fig. 4. For the
347 isomer, we have found a less collective RPA solution at a
lower energy, 560 keV, which has about 80% of the (Q¢)rpa
value of the most collective one presented in the figure. The
reason why (Qg)rpa for the 34" isomer is considerably small
is traced back to this fragmentation of the precession mode
in this particular case. This kind of fragmentation sometimes
happens in the RPA calculation.

In Fig. 7, we compare the effective (gx — gg) factors
extracted from the experimental data and those calculated
in two ways, Eq. (50) and Eq. (52). As for the observed
ones, they were determined [44,45] from the branching
ratios of available lowest transitions in respective rotational

9gKk—9gr
.6 T T T T

o O O O o o o
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T

—_
=]
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(28
[\~
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[\
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w
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w
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FIG. 7. Effective (gx — gr) factors for high-K configurations.
Those calculated by the RPA, Eq. (52), are denoted by filled circles
connected by solid lines; those by the mean-field approximation (49),
by filled triangles connected by dotted lines. Those extracted from
the experimental data [44,45] are shown by crosses.
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bands, by using the rotational model expressions (45) and
(47) with Qp = 7.0 b being assumed. In this way, absolute
value |gx — gr| is obtained, and we assume that its sign is
determined by that of the calculated E2/M 1 mixing ratio in the
RPA result. Accordingly, some care is necessary to compare
the experimentally extracted g factors with calculations. The
agreement between the observed and calculated ones is
semiquantitative, but the RPA result follows the observed trend
rather well. Compared to the RPA g factors, those calculated
by the mean-field approximation are poorer. Again, the two
calculations deviate appreciably for the K™ = 187,25, 28,
and 29" configurations, where the high-j decoupled orbital
w[541]1/2~, which has a large positive g factor, is occupied.
The difference between the mean-field (gx — gg) and (gx —
gr)rea 1s further discussed in the next subsection by studying
the adiabatic limit of the precession mode in the RPA.

B. Interpretation of the result in the adiabatic limit

As demonstrated in the previous subsection, the RPA calcu-
lation reproduces the precession phonon energies without any
kind of adjustments. The electromagnetic properties obtained
through the RPA wobbling formalism are in good agreement
with those of the strong coupling rotational model, where the
quadrupole moments and the effective g factors are calculated
within the mean-field approximation. Since the rotational band
is described as multi-phonon excitations in the RPA wobbling
(or precession) model, it is not apparent that two models lead to
similar results for observables. Our results indicate, however,
that the RPA treatment of the rotational excitations is valid; it
especially gives areliable microscopic framework for studying
the wobbling motion recently observed.

The reason why the RPA precession mode gives the
B(E2) and B(M1) similar to those calculated according to
the rotational model is inferred by taking the adiabatic limit
(wprec —> 0) of the RPA phonon creation operator. It has been
shown in Ref. [22] that the precession phonon can be explicitly
written up to the first order in wpre as

. 1 -
Xll)rec ~ _(‘I+ + a)pl‘ecji l®+)RPA

V2K
1
A 7(# + K i® )rpa- (53)

TS

Here the angle operator © is defined by

1
[h, 1O = —Je, (k=1y,2), (54)

cr
€1

Or=0,+i0,,

where J[' is the Inglis cranking inertia and given from
the effective inertia (40) by setting wprec = 0. These angle
operators possess desired properties,

([O, J1]) = idk. (55)

For the E2 transitions, the contribution of the ®, part in
Eq. (53) proves to be negligible if the harmonic oscillator
potential is taken as a mean field that is,

1 3
([Xeer Qail) & F U Q2o = /;on), (56)
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which precisely means Qg =~ (Qo)rpa in the adiabatic
limit.

As for the M1 transitions, however, the ®, part also
contributes:

(X eer 1 11) & (4, 1 -1]) + K (O, p111))

1
V2K
= 7\

which gives (gx — gr) &

K
V2
(gx — gr)rpa if we identify

2 1
o (i-1.i0.]). (58)

3 un

This identification is reasonable. The magnetic moment
operator (4] possesses a property of angular momentum
and is approximately proportional to J_. Then the expectation
value of the right-hand side of Eq. (58) is expected to depend
only weakly on the high-K configuration because of Eq. (55).
More precisely, if the operators J_, ®,, and p; _; are divided
into the neutron and proton parts like

(u1-1.10.D), (57)

gr <> 8r =

=747 e,=0"+06,

(59
3 v
o1 X == i (8T 4+ g IY),
8
then the following relation is derived,
A (ﬂ)Jcr(n) + g(v)Jcr(v) 60
&R cr() cr(v) ’ ( )
J T+ I
@) @ cr(r) : cr . gor(m)
because of ([J7,i@)]) = [T with TP = J 7 +

T (r =7, v). With a cruder estimate ([J©,i07]) ~
2N./A (r = 7, v), one finds a constant gg ~ Y N.g™/A,
wh)ich gives a classical result, Z/A, by setting g™ =1 and
g™ =0.

An approximate relation gg = J' () /(T ™ 4 7)), which
corresponds to Eq. (60) with g =1 and g = 0, has been
used for the ground state rotational band, i.e., the case of
collective rotations [54]. It seems, however, difficult to justify
a similar relation, gz = ZJ®/(ZJY + NJ™), which is
used in Ref. [44]. Thus, the “rotor g factor” gg is not acommon
constant, but it also depends on the high-K configurations as
the intrinsic g factor gx does. To see how the approximate
relation (60) holds, we compare, in Fig. 8, the two calcu-
lated quantities, gx — (gx — gr)rea and J 7 /(T 4
VA i)y " where the cranking inertia J or(® ) . which dlverges
when the 7[541]1/2~ orbital is occupied, is replaced with
the neutron or proton part of the effective inertia (40), see
also Fig. 5. As seen in the figure, these two quantities are in
good agreement with each other, again, except for the K™ =
187,25%,28~, and 29" configurations, where the high-j
decoupled orbital is occupied and 7™ /(7 ) 4 7y
is very large. The excitation energles are underestlmated for
these high-K configurations. Therefore, the proton moments
of inertia are overestimated for them; in fact the proton
contributions are considerably larger than the neutron ones in
these configurations, as shown in Fig. 5. Apart from these four
configurations, the deduced gg factors in Fig. 8 are similar to
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FIG. 8. Comparison of deduced g from two calculations. One
from gx — (gx — gr)rea is denoted by filled circles connected by
solid lines; the quantity 7™ /(7" 4 7™ by filled squares
connected by dotted lmes

the ground state value, 0.227, though it is appreciably different
from the standard value, Z/A = 0.416. For reference, the
cranking moment of inertia for the ground state rotational band
calculated using the even-odd mass differences as pairing gaps
is J& = 22.7 h*/MeV (about 80% of the experimental value,
see the previous subsection). The proton contribution to it is
6.1h%/MeV and 77 (7 4 7y = 0.269, whichis
slightly larger but con51stent Wlth the calculated ground state
gg value, 0.227.

The above results indicate that the rotor gz should be
considered to depend also on the intrinsic configurations,
but the dependence is conspicuous only for those including
the high-j decoupled orbit, which has a large decoupling
parameter as well as a large g factor. The reason why the
effective (gx — gr) factors of the RPA calculation reproduce
the experimentally extracted ones better than those of the
mean-field g factors is inferred as follows. Since, as is well
known, the g factors of proton orbitals are much larger than
those of neutron orbitals, the amount of the proton contribution
is overwhelming for the mean value (u,) in comparison
with that for (J,). Considering this fact together with the
overestimation of the proton moments of inertia mentioned
in the previous paragraph, it is likely that the calculated
values of gx (50) for the K™ = 18~,25%,287, and 29*
configurations with a proton high-j decoupled orbital are also
overestimated. In the mean-field calculation, the calculated
values of (gx — gr) for those configurations are thus relatively
large, because the common ground state g factor (50) is used.
This trend can be seen also in the similar type of mean-field
calculations in Refs. [44,45]. (Note that different gz factors
are used in [44] and [45].) In the RPA calculation, however,
the rotor g factor is given by gg, (58) or (60), which is
overestimated for these four configurations (see Fig. 8). Thus,
the overestimation of two g factors may largely cancel out
in the resulting (gx — gg)rpa Vvalues, yielding a reasonable
agreement with the experimental data seen in Fig. 7.

The realistic mean field is not very different from the
harmonic oscillator potential, so the approximate equality (56)
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for the E2 operator is expected to hold in general cases. How-
ever, it is not very clear to what extent this equality holds. It is
a subtle problem of whether the adiabatic approximation holds
because the precession phonon energies are 200 to 600 keV,
which are not negligible compared to the quasiparticle ex-
citation energies. (Note that the pairing gap is quenched in
high-K conconfigurations.) In addition to the deviations caused
by the nonadiabatic effects, the adiabatic approximation itself
breaks down if one quasiparticle in a pair of high-j decoupling
orbits (€2, = £1/2) is occupied, because the Inglis cranking
moment of inertia diverges due to the zero denominator. In such
cases, the present RPA calculation eventually overestimates
the moment of inertia, although it does not diverge. This
effect is also reflected in the calculated transition moments
(Qo)rea and the effective g factors, which are rather different
from the values given by the mean fields. Whether the RPA
calculation gives reliable results for such cases where the
nonadiabatic effect is large is an important future issue.
The direct measurement of Qg [i.e., B(E2) value] for the
precession band is desirable for this purpose.

V. CONCLUDING REMARKS

We have investigated the precession bands, i.e., the strongly
coupled rotational bands excited on high-K intrinsic con-
figurations, by means of the RPA, the microscopic theory
for vibrations. It is demonstrated that the observed trend of
the precession phonon energies in '"*W is well reproduced
by the RPA calculation. This is highly nontrivial because
we have employed the minimal coupling interaction, which
is determined by the mean field and the vacuum state
based on it, and so there are no adjustable force parameters
whatsoever.

It is emphasized that this precession mode is related to the
three-dimensional motion of the angular momentum vector in
the principal axis frame (body-fixed frame), where a collective
rotation about the perpendicular axis is superimposed on the
large noncollective rotation about the symmetry axis (high-K
quasiparticle alignments). It has been shown that such a preces-
sion mode can be obtained by taking an axially symmetric limit
of more general wobbling motions in the microscopic frame-
work of the cranked-RPA theory. The unique feature of the
ideal wobbling motion is the triaxiality of deformation, which
means that the system can rotate collectively around all three
principal axes. It is, however, noticed that the single-particle
alignments are known to contribute equally well to high-spin
states in real nuclei. Actually, in the case of Lu, Hf nuclei,
where the wobbling phonon bands are observed, the i3/,
quasiparticle alignments play important roles [11,12,20]. The
angular momentum along the main rotation (cranking) axis
is composed of the collective and the single-particle degrees
of freedom in the microscopic cranking formalism. Then the
axially symmetric limit of the non-collective rotation scheme
can be naturally taken from the case of triaxial deformation;
the portion of the single-particle alignments increases in the
course of taking the limit, and finally it describes the high-K
isomeric state (100% alignments). Although the unique feature
of the triaxial wobbling motion is lost in this limit, the
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precession mode is still interesting because it corresponds to
the eigenmode of a nonuniform rotational motion of a classical
symmetric top. It gives us a hint as to how a nucleus rotates as
a three-dimensional object.

The electromagnetic properties, the £2 and M1 transition
probabilities, are also important for this kind of collective
excitation modes. We have shown that the calculated B(E2)
and B(M1) in terms of the RPA correspond to those given
by the conventional rotational model expressions, where the
intrinsic quadrupole moment and the effective g factors are
calculated within the mean-field approximation. The link
between the RPA and the rotational model expressions is given
in the adiabatic limit, where the precession phonon energy goes
to zero. Then the rotor gg factor is not a common factor any
more, but depends on the configurations, especially on the
occupation of the high-j decoupled proton orbital. Since the
RPA formalism includes this effect properly, the calculated
B(M1) values reproduce the experimentally deduced ones
rather well. It is, however, noticed that the adiabatic ap-
proximation is not necessarily a good approximation because
the precession energies are not very small; more crucially,
if a high-j decoupled orbital with & = 1/2 is occupied, the
approximation breaks down completely. Therefore, it is an
important future task to examine how the nonadiabatic effect
plays a role in the realistic cases. More experimental data,
especially B(E2) and B(M1) values, are necessary for this
purpose.

Finally, it is worth mentioning the similar RPA calculations
for the wobbling motion in the Lu and Hf region. We have
presented the result in recent papers [11,12]. Although we
obtained the RPA solutions, which have expected properties
of the wobbling motion, the calculated out-of-band over
in-band B(E2) ratios were smaller than the measured ones
by about a factor 2 to 3; this was the most serious problem
in our microscopic calculation. The measured ratio is almost
reproduced by the simple rotor model. Both the out-of-
band and in-band B(E?2), which are vertical and horizontal
transitions discussed in Sec. II, are expressed in terms of
the intrinsic quadrupole moments Q,o and Q», [30] [or e.g.,
deformation parameters (¢,, ¥)], combined with the wobbling
phonon amplitudes. In the RPA wobbling formalism, on the
other hand, the in-band transition is calculated by the intrinsic
moments; while the out-of-band transition is calculated by the
RPA phonon transition in Eq. (23). Thus the underestimation
of the B(E2)ratio above means that the RPA phonon transition
amplitudes are smaller by about 50—70% than the expected
ones.

The adiabatic approximation can also be considered for the
case of the wobbling phonon [14]. Similar correspondence
between the intrinsic moments and the RPA transition ampli-
tudes, like Q¢ =~ (Qo)rpa in the present paper, is obtained with
a nontrivial modification: two amplitudes are related to the
operators Q;T) and Q(Zg) in Eq. (28), and B(E2) is calculated
by a linear combination of them with coefficients involving
the three moments of inertia. Therefore, incorrect coefficients
of amplitudes would make B(E2) values deviate considerably,
even though the adiabatic approximation is applicable and two
amplitudes are obtained in a good approximation. There is, of
course, another possibility that the adiabatic approximation
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itself is no longer valid. It should be noted that the wob-
bling excitation energies observed in Lu isotopes are about
200—500 keV, which are not small if translated to the transition
phonon energy in the laboratory frame, wyob + @cr; Se€
Eq. (38). In light of the present investigation, it may be
possible that the RPA approach yields the correct magnitude
of out-of-band transitions also for the case of the wobbling
mode, because it actually does in the case of the precession
phonon bands. Thus, it is a very important future issue to
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examine whether the RPA wobbling formalism can describe
the observed B(E?2) ratio in the Lu and Hf region.
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