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We present an example that shows that the random phase approximation applied to
high-K multi-quasiparticle configurations leads to a rotor picture. This is accomplished by
calculating excitation energies and magnetic properties of 178W. We also deduce the effective
gR of high-K rotors and compare it with that of low-K rotors.

Rotation is one of typical collective motions in atomic nuclei. Normally, axially
symmetric nuclei possess large angular momenta in the form of collective rotation
about an axis perpendicular to the symmetry axis. In some cases, in which sin-
gle particle orbitals with large angular momenta ji and their projections onto the
symmetry axis Ωi lie in the vicinity of the Fermi surface (realized typically in the
A ∼ 180 region), the nucleus can acquire a large angular momentum through the
alignment of multiple quasiparticles (QPs) along the symmetry axis. Sometimes in
the latter case yrast states are formed, or even if they are not formed, isomers are
often formed owing to the largeness of K =

∑
i Ωi.

Detailed information regarding high-K configurations can be obtained from
their magnetic properties — static magnetic moments and/or g-factors inferred
from B(M1)/B(E2) branching ratios of in-band transitions in rotational bands ex-
cited from high-K configurations. Data of the latter type are transformed into
|gK − gR|/Q0 by use of the rotor model.1) Then, by employing appropriate values
of gR and Q0, the extracted gK is compared with the weighted average of single-j g
factors with respect to Ωi.2)

In a different approach, (at least the lower members of) rotational bands excited
from high-K configurations can be described as multiple excitations of the precession
phonons in the language of the random phase approximation (RPA).3),4) Thus, by
calculating the wave function of the one phonon state, B(M1 : I = K + 1 → K)
can be obtained and transformed into the effective (RPA) (gK − gR); its sign can be
determined from the calculated E2/M1 mixing ratio. The magnetic moment 〈µ〉,
and accordingly the g factor, g =

√
4π
3 〈µ〉/(〈J〉µN), of high-K configurations can be

calculated at the mean field level. Because this g essentially coincides with gK , we
can deduce the value of gR for a high-K rotor by combining the RPA (gK − gR) and
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The purpose of this paper is twofold: First, by applying the above method to

178W, for which the richest experimental information5)–7) is available, we confirm that
the RPA yields a rotor picture via the excitation energies and magnetic properties,
and second, we deduce gR for high-K rotors.

We begin with the following one-body Hamiltonian:

h′ = h − �ωrotJx,

h = hNil − ∆τ (P †
τ + Pτ ) − λτNτ ,

hNil =
p2

2M
+

1
2
M(ω2

xx2 + ω2
yy

2 + ω2
zz

2) + vlsl · s + vll(l2 − 〈l2〉Nosc). (1)

Here τ = 1 and 2 stand for the neutron and the proton, respectively, and the chemical
potentials λτ are determined so as to give the correct average particle numbers, 〈Nτ 〉.
The oscillator frequencies are related to the quadrupole deformation parameters ε2
and γ in the usual way. (We adopt the so-called Lund convention.) The orbital
angular momentum l is defined in the singly-stretched coordinates x′

k =
√

ωk
ω0

xk, with
k = 1, 2 and 3 denoting x, y and z, respectively, and the corresponding momenta.
Nuclear states with QP excitations, i.e., alignments along the x axis, are obtained
by exchanging the QP energy and wave functions as

(−e′µ, V µ, Uµ) → (e′µ̄, U µ̄, V µ̄), (2)

where µ̄ denotes the signature partner of µ.
We apply the RPA to the residual pairing plus doubly-stretched quadrupole-

quadrupole (Q′′ · Q′′) interaction between QPs. Because we are interested in the
precession mode that has a definite signature quantum number, α = 1, only two of
the five components of the Q′′ · Q′′ interaction are relevant. These are the K = ±1
components. Note that we refer to the symmetry axis, with respect to which the
K quantum number is defined, as the x axis throughout this paper; that is, we
consider the γ = −120◦ case. These components of the interaction are related to
the restoration of spherical symmetry. Requiring the decoupling of this symmetry
mode (the Nambu-Goldstone mode), J± = Jy ± iJz, the strength of the interaction
is determined. Then, utilizing the identities given in Table III of Ref. 8),∗) the RPA
equation of motion can be cast into9) the following form, which we use in the actual
calculation, instead of the original equation in terms of Q′′ operators:

(ω2 − ω2
rot)

∣∣∣∣ A(ω) C(ω)
B(ω) D(ω)

∣∣∣∣ = 0, (3)

where

A(ω) = ωJy(ω) − ωrotJyz(ω),
B(ω) = ωrot (Jy(ω) − Jx) − ωJyz(ω),
C(ω) = ωrot (Jz(ω) − Jx) − ωJyz(ω),
D(ω) = ωJz(ω) − ωrotJyz(ω), (4)

∗) Strictly speaking, these identities have very small errors introduced by the use of singly-

stretched (rather than unstretched) l ´ s and l2 potentials.
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with

Jx = �〈Jx〉/ωrot,

Jy(ω) =
(α=±1/2)∑

µ<ν

2Eµν (iJy(µν))2

E2
µν − (�ω)2

,

Jz(ω) =
(α=±1/2)∑

µ<ν

2Eµν (Jz(µν))2

E2
µν − (�ω)2

,

Jyz(ω) =
(α=±1/2)∑

µ<ν

2�ωiJy(µν)Jz(µν)
E2

µν − (�ω)2
. (5)

Here, we adopt the convention in which the matrix elements of Jy and µy (below) are
purely imaginary. Then, the non-spurious part of Eq. (3), A(ω)D(ω)−B(ω)C(ω) =
0, can be rewritten as[

ωJ (eff)
+ (ω) − ωrot

(
Jx − J (eff)

+ (ω)
)] [

ωJ (eff)
− (ω) + ωrot

(
Jx −J (eff)

− (ω)
)]

= 0, (6)

where the subscripts + and − refer to the ∆K = +1 and −1 modes, respectively,
and we have

J (eff)
± (ω) = J⊥(ω) ∓ Jyz(ω),
J⊥(ω) = Jy(ω) = Jz(ω). (7)

For ∆K = +1 excitations, corresponding to the precession modes, the excitation
energy in the laboratory frame is given by

�ω + �ωrot = �ωrot
Jx

J (eff)
+ (ω)

= �
2 〈Jx〉
J (eff)

+ (ω)
, (8)

which is independent of ωrot. Because the excitation energy of the first rotational
state for the high-K configuration in the rotor model is given by

EI=K+1 − EI=K =
�

2

J (K + 1) , (9)

which is derived from

EI =
�

2

2J
(
I(I + 1) − K2

)
, (10)

Eq. (8) (〈Jx〉 = K in the cases γ = −120◦ and 60◦) and Eq. (9) correspond to each
other well for K � 1. In other words, J (eff)

+ (ω) in our RPA formalism and J in the
axially symmetric rotor model correspond to each other.

Marshalek derived an expression for multipole transition rates, which is valid for
I � 1, in terms of the RPA wave function.10) In the M1 case, it reads

B(M1 : I → I − 1) =
1
2
〈[iµy + µz, X

†
n]〉2,

µy(z) =

√
3
4π

µN

(
glly(z) + g(eff)

s sy(z)

)
, (11)
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for the n-th phonon state. Hereafter we concentrate on the precession phonon. By
equating this with the expression in the rotor model,1)

B(M1 : I = K + 1 → K) =
3
4π

µ2
N (gK − gR)2 K2〈IK10|I − 1K〉2, (12)

we obtain the RPA |gK − gR|. Its sign is determined by that of the calculated E2/M1
mixing ratio.

Calculations are performed for all the high-K (4, 6, 8 and 10QP) configurations
that possess rotational bands: Kπ = 13−, 14+, 15+, 18−, 21−, 22−, 25+, 28−, 29+,
30+ and 34+. The configuration for Kπ = 13−, 14+ and 15+ is 2ν2π, that for 18− is
2ν4π, that for 21− and 22− is 4ν2π, that for 25+, 28− and 30+ is 4ν4π, and that for
29+ and 34+ is 6ν4π.6),7) The model space is Nosc = 3 – 7 for neutrons and Nosc = 2
– 6 for protons. The strengths of the l · s and l2 potentials are taken from Ref. 11).
The pairing gaps are assumed to be 0.5 MeV for 2QP and 0.01 MeV for 4QP and
6QP configurations, both for neutrons and protons. The quadrupole deformation is
chosen to be ε2 = 0.235, which reproduces, after taking a rough average, the value
Q0 = 7.0 eb, which was assumed in experimental analyses.6),7) For the spin g factor,
g
(eff)
s = 0.7g

(free)
s is adopted, as usual. Hence, the choice of parameter values in this

work is semi-quantitative; we checked the robustness of the results with respect to
the variations of these parameter values. In the cases symmetric with respect to the x
axis considered here, the results do not depend on ωrot, while the actual calculations
were performed with �ωrot = 0.001 MeV.

Figure 1 presents the calculated and observed relative excitation energies for the
first rotational band members, EI=K+1 − EI=K . We find that our RPA calculation
reproduces their gross features well, but there are deviations at Kπ = 18−, 25+, 28−
and 29+, which include the πh9/2 orbital. Note that here small calculated energies
correspond to large moments of inertia [see Eq. (8)], and their size is correlated with
that of the calculated Q0. The large size of Q0 indicates the shape polarization effect
of this high-j orbital in the prolate direction. (With regard to the effect of the πh9/2

orbital on the moment of inertia, see also Refs. 12) and 13).)
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Fig. 1. Calculated and experimental excitation energies of the first rotational band members,

EI=K+1 − EI=K . The data are taken from Refs. 6) and 7).
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Fig. 2. Calculated intrinsic g of high-K configurations (solid curve) and calculated (dashed curve)

and experimental (points with error bars) (gK − gR). The data are taken from Refs. 6) and 7).

In Fig. 2 we compare the RPA (gK − gR) extracted from the calculated B(M1; I =
K + 1 → K) and the observed one extracted from the branching ratios of the
lowest available transitions in the respective rotational bands, assuming Q0 = 7.0
eb. They agree with each other well. In this figure, the calculated intrinsic g =√

4π
3 〈µx〉/(〈Jx〉µN ) of high-K configurations are also shown. The two calculated

curves are roughly parallel. According to the relation1)

gR = g − (gK − gR)
K2

I(I + 1)
, (13)

with I = K + 1, g is almost equal to gK . Consequently, the difference between
the two curves essentially corresponds to the effective gR for high-K cases. Thus,
this correlation suggests the possibility of deducing the effective gR of the high-K
configurations under consideration by substituting the RPA (gK − gR) into Eq. (13).
Its average value is approximately 0.29, as seen from Fig. 3. This value may represent
a rough measure of a property of high-K rotors. Moreover, an interesting feature
is that there are significant variations, and the variations for the configurations
including the πh9/2 orbital are larger than those for the others. In order to see this
more clearly, in Fig. 3 we compare the above-deduced values with those calculated
using the approximate relation14)

gR =
Jπ

Jν + Jπ
, (14)

where the neutron and proton parts of the effective inertia, the upper sign in Eq. (7),
are substituted into Jν and Jπ. It is clear that the values of gR deduced from
Eqs. (13) and (14) exhibit similar dependence on K, although those from Eq. (14)
are much larger for the configurations in which the πh9/2 orbital is occupied. This
is due to the fact that the contribution to the moment of inertia from the πh9/2

orbital is large and overestimated in the calculation, as mentioned above in the case
of excitation energies.

Finally, we compare gR for high-K rotors above and that of the ground state
band. We calculated g of the 2+, 4+ and 6+ states (which in the zeroth-order
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Fig. 3. gR of high-K rotors deduced using Eq. (13) (solid curve) and calculated using Eq. (14)

(dashed curve).

approximation plays the role of gR for the nearby K �= 0 configurations) using
�ωrot = 0.053, 0.119 and 0.176 MeV, respectively, with ε2 = 0.235, γ = 0 and the
odd-even mass differences ∆n = 0.883 MeV and ∆p = 1.026 MeV as the pairing gaps.
The results are g = 0.218, 0.216 and 0.214, respectively, which are almost equal to
the average values for the configurations that do not include the πh9/2 orbital. This
indicates that high-K and low-K rotors are similar, unless the shape driving πh9/2

orbital is included.
To summarize, we have numerically verified that the random phase approxima-

tion applied to high-K multi-quasiparticle configurations leads to a rotor picture, as
previously demonstrated using E2 properties by Andersson et al.,3) by calculating
excitation energies and M1 properties. Next, we deduced the effective gR for high-K
rotors and compared its values with those of the low-K rotor near the ground state.
A more detailed investigation is in progress.
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