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The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked shell model
plus random phase approximation. First, by calculating at a low rotational frequency theg dependence of the
three moments of inertia associated with the wobbling motion, the mechanism of the appearance of the
wobbling motion in positive-g nuclei is clarified theoretically—the rotational alignment of thepi13/2 quasipar-
ticle(s) is the essential condition. This indicates that the wobbling motion is a collective motion that is sensitive
to the single-particle alignment. Second, we prove that the observed unexpected rotational-frequency depen-
dence of the wobbling frequency is an outcome of the rotational-frequency dependent dynamical moments of
inertia.
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I. INTRODUCTION

Deformation of the nuclear shape from spherical symmet-
ric one has long been one of the most important issues in
nuclear structure physics. Among them, searches for evi-
dences of the triaxial(Y22 or g) one have been pursued long
time, for example, the even-odd energy staggering in the
low-spin part of theg bands[1], the signature dependence of
the energy spectra, and theE2/M1 transition rates in
medium-spin odd-odd and odd-A nuclei [2–4], properties of
the K isomers[5,6], and so on. But their results have not
been conclusive; making a clear distinction between the
static and the dynamic(vibrational) ones has not been suc-
cessful up to now. Theoretically, appearance of the wobbling
motion, which is well known in classical mechanics of asym-
metric tops[7] and whose quantum analog was discussed in
terms of a rotor model about 30 years ago[8], is a decisive
evidence of static triaxial deformations. Subsequently its mi-
croscopic descriptions were developed by several authors
[9,10]. Since the small-amplitude wobbling mode carries the
same quantum numbers, parityp=+ and signaturea=1, as
the odd-spin members of theg band, Ref.[11] anticipated
that it would appear as a high-spin continuation of theg
band, but it has not been resolved that in what nuclei, at what
spins, and with whatg wobbling modes would be observed.

Shimizu and Matsuyanagi[12] and Onishi[13] performed
extensive numerical calculations for normally deformed Er
isotopes with relatively smallugu. Matsuzaki[14], Shimizu
and Matsuzaki[15], and Horibata and Onishi[16] also stud-
ied 182Os with relatively large negativeg but their correspon-

dence to experimental information has not been very clear.
These studies indicate the necessity of high-spin states in

stably and stronglyg-deformed nuclei. Bengtsson studied
high-spin states around164Hf [17] and found systematic ex-
istence of the TSD(triaxial superdeformed or strongly de-
formed) states withe2,0.4 andugu,20°. This confirmed the
discussion on the shell gap atN=94 in Ref.[18], the work in
which the yrast TSD band in163Lu was reported; in 2000 an
excited TSD band was observed in this nucleus and from the
strengths of the interbandE2 transition rates this was unam-
biguously identified with the wobbling motion[19]. These
data were analyzed by using a particle-rotor model[20] and
the E2 transition rates were reproduced well. Subsequently
TSD bands were found in some Lu and Hf isotopes and
wobbling excitations were observed also in165,167Lu [21,22].
A close look at these data, however, tells us that the sign of
their g-deformation seems to contradict to an irrotational
motion and that the unexpected behavior of the wobbling
frequency has not been explained yet.

Thus in the preceding Rapid Communication[23] we pre-
sented an answer to these problems. In the present paper,
after summarizing the discussion there we extend numerical
analyses to elucidate it. An emphasis is put on the behavior
of the calculated dynamic moments of inertia.

II. WOBBLING MOTION IN TERMS OF THE RANDOM
PHASE APPROXIMATION

We start from a one-body Hamiltonian in the rotating
frame,

h8 = h − "vrotJx, s1d

h = hNil − DtsPt
† + Ptd − ltNt, s2d
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hNil =
p2

2M
+

1

2
Msvx

2x2 + vy
2y2 + vz

2z2d

+ vlsl ·s+ vllsl2 − kl2lNosc
d. s3d

In Eq. s2d, t=1 and 2 stand for neutron and proton, respec-
tively, and chemical potentialslt are determined so as to
give correct average particle numberskNtl. The oscillator
frequencies in Eq.s3d are expressed by the quadrupole de-
formation parameterse2 and g in the usual way. They are
treated as parameters as well as pairing gapsDt. The orbital
angular momentuml in Eq. s3d is defined in the singly
stretched coordinatesxk8=Îsvk/v0dxk, with k=1–3denoting
x–z, and the corresponding momenta. By diagonalizingh8
at eachvrot, we obtain quasiparticlesQPd orbitals and the
nuclear yrasts0QPd state. Sinceh8 conserves parityp and
signature a, nuclear states can be labeled by them.
Nuclear states with QP excitations are obtained by ex-
changing the QP energy and wave functions such as

s− em8 ,Vm,Umd → sem̄8 ,Um̄,V m̄d, s4d

wherem̄ denotes the signature partner ofm.
We perform the random phase approximation(RPA) to

the residual pairing plus doubly stretched quadrupole-
quadrupolesQ9 ·Q9d interaction between QPs. Since we are
interested in the wobbling motion that has a definite quantum
number,a=1, only two components out of five of theQ9 ·Q9
interaction are relevant. They are given by

Hint
s−d = −

1

2 o
K=1,2

kK
s−dQK9

s−d†QK9
s−d, s5d

where the doubly stretched quadrupole operators are defined
by

QK9 = QKSxk → xk9 =
vk

v0
xkD , s6d

and those with good signature are

QK
s±d =

1
Î2s1 + dK0d

sQK ± Q−Kd. s7d

The residual pairing interaction does not contribute because
Pt is an operator witha=0. The equation of motion

fh8 + Hint
s−d,Xn

†gRPA = "vnXn
† s8d

for the eigenmode

Xn
† = o

m,n

sa=±1/2d

fcnsmndam
†an

† + wnsmndanamg s9d

leads to a pair of coupled equations for the transition ampli-
tudes

TK,n = kfQK
s−d,Xn

†gl. s10d

Then, by assuminggÞ0, this can be castf10g into the form

svn
2 − vrot

2 dFvn
2 − vrot

2 fJx − Jy
seffdsvndgfJx − Jz

seffdsvndg

Jy
seffdsvndJz

seffdsvnd G = 0,

s11d

which is independent ofkK
s−ds. This expression proves that

the spurioussNambu-Goldstoned mode given by the first fac-
tor and all normal modes given by the second are decoupled
from each other. HereJx=kJxl /vrot as usual and the de-
tailed expressions ofJy,z

seffdsvnd are given in Refs.
f10,14,15g. Among normal modes, one obtains

vwob
2 = vrot

2 fJx − Jy
seffdsvwobdgfJx − Jz

seffdsvwobdg

Jy
seffdsvwobdJz

seffdsvwobd
s12d

by putting vn=vwob. Note that this gives a real excitation
only when the right-hand side is positive and it is non-
trivial whether a collective solution appears or not. Evi-
dently this coincides with the form derived by Bohr and
Mottelson in a rotor modelf8g and known in classical
mechanicsf7g, aside from the crucial feature that the mo-
ments of inertia arevrot dependent in the present case.

One drawback in our formulation is that ourJx tends to
be larger than corresponding experimental values because of
the spurious velocity dependence of the Nilsson potential as
discussed in Refs.[24,25]. A remedy for this was discussed
there but that forJy,z

seffd has not been devised yet. Therefore
we assume for the present that a similar discussion holds for
the latter, and accordingly the ratioJy,z

seffdsvwobd /Jx which
actually determinesvwob is more reliable than its absolute
magnitude.

Interband electric quadrupole transitions between thenth
excited band and the yrast are given as

BsE2:In → sI ± 1dyrastd =
1

2
sT1,n

sEd ± T2,n
sEdd2 s13d

in terms of

TK,n
sEd = e

Z

A
TK,n. s14d

They will be abbreviated asBsE2dout later for simplicity.
In-band ones are given as

BsE2:I → I − 2d =
1

2
SÎ3

2
kQ0

s+dsEdl +
1

2
kQ2

s+dsEdlD2

s15d

in terms of

kQK
s+dsEdl = e

Z

A
kQK

s+dl, s16d

and assumed to be common to all bands. They will be ab-
breviated asBsE2din. Here we adopted a high-spin approxi-
mation f26g. The transition quadrupole momentQt is ex-
tracted fromBsE2din by the usual rotor-model prescription.

To compare collectivities of these two types ofE2 transi-
tions, we introduce a pair of deformation parameters
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R2ay =Î 15

16p
kx2 − z2l =K1

2
Q2

s+d −
Î3

2
Q0

s+dL ,

R2az =Î 15

16p
kx2 − y2l = kQ2

s+dl. s17d

Then it is evident that the in-band one is expressed as

BsE2:I → I − 2d =
1

2
R4say

sEd − az
sEdd2. s18d

As for the interband ones, by expandingQK
s−d by Xn

†s andXns,
wheren runs both normal modes and the Nambu-Goldstone
modeXNG

† = 1/Î2I sJz+ iJyd, we obtain fromfQ1
s−d ,Q2

s−dg=0
a kind of sum rule

o
nÞNG

T1,nT2,n = −
2

I
R4ayaz. s19d

Consecutively introducing the ratios of the dynamic to static
deformations,

ry,n =
T1,n

2R2ay
,

rz,n = −
T2,n

2R2az
, s20d

the sum rule above reads

o
nÞNG

ry,nrz,n =
1

2I
. s21d

The dynamic amplitudesTK,n describe shape fluctuations as-
sociated with the vibrational motion in the uniformly rotating
frame. Transformation to the body-fixedsprincipal axisd
framef10g turns the shape fluctuation into the fluctuation of
the angular momentum vector, i.e., the wobbling motion.

This transformation relates the ratiosry,n and rz,n to the mo-
ments of inertiaf15g:

ry,n = cn
1

Î2I
SWz,n

Wy,n
D1/4

,

rz,n = sncn
1

Î2I
SWy,n

Wz,n
D1/4

, s22d

wherecn is a real amplitude that relates the dynamic ampli-
tude TK,n and the moment of inertia,sn is the sign ofsJx

−Jy
seffdd (so sn.0 for wobblinglike RPA solutions), and

Wy,n = 1/Jz
seffdsvnd − 1/Jx,

Wz,n = 1/Jy
seffdsvnd − 1/Jx. s23d

Thus, the interbandBsE2d is rewritten as

B„E2:In → sI ± 1dyrast…

=
1

I
R4cn

2Fay
sEdSWz,n

Wy,n
D1/4

7 snaz
sEd

3SWy,n

Wz,n
D1/4G2

, s24d

which coincides with the formula given by the rotor model
f8g, except for the appearance of the amplitudecn and sign
sn. Substituting the ratiosry,n andrz,n into Eq.s21d, one finds
that the amplitudes should satisfy

o
nÞNG

sncn
2 = 1. s25d

This form of sum rule clearly indicates that the amplitude
cn is a microscopic correction factor quantifying the collec-
tivity of the wobbling motion, for whichcn

2.1 means the
full collectivity and reproduces the results of the macro-

FIG. 1. Triaxiality dependence of(a) excita-
tion energy of the wobbling motion,(b) three mo-
ments of inertia associated with it,(c) expectation
values of angular momenta in the yrast state, and
(d) quadrupole transition amplitudes between the
wobbling and the yrast states in168Hf, calculated
at "vrot=0.25 MeV with e2=0.43 andDn=Dp

=0.3 MeV.
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scopic rotor model in both the energy and the interband
BsE2d values.

III. NUMERICAL CALCULATION AND DISCUSSION

A. Summary of the preceding study

Since the first experimental confirmation of the wobbling
excitation in163Lu [19], g. +20° has been widely accepted
as the shape of the TSD states in this region. This is predomi-
nantly because the calculated energy minimum forg.
+20° is deeper than that forg.−20° [17] according to the
shape driving effect of the alignedpi13/2 quasiparticle. The
recent precise measurements ofQt [27] also support this. On
the other hand, the sign ofg deformation leads to different
consequences on moments of inertia, which are directly con-
nected to the excitation energy of the wobbling mode
through the wobbling frequency formula[8], cf. Eq. (12).
Since the RPA is a microscopic formalism, no distinction
between the collective rotation and the single-particle de-
grees of freedom has been made.

Therefore, the moments of inertia calculated in our RPA
formalism in Sec. II are those for rotational motions of the
whole system. In contrast, the macroscopic irrotational-like
moments of inertia are often used in the particle-rotor calcu-

lations, whereJy.Jx@Jz for g. +20° and they lead to an
imaginary wobbling frequencyvwob. It is, however, noted
that the moments of inertia of the particle-rotor model are
those of the rotor and no effect of the single-particle align-
ments is included, so that they do not necessarily correspond
to those calculated in our RPA formalism.

In the preceding paper[23] we have performed micro-
scopic RPA calculations without dividing the system artifi-
cially into the rotor and particles. That work proved that for
the calculated moment of inertia,Jx=kJxl /vrot, the contribu-
tion from the aligned QPssd, DJx= iQP/vrot with iQP being the
aligned angular momentum, is superimposed on an
irrotational-like moment of inertiasJy.Jxd of the “core.”
Consequently the totalJx is larger thanJy, which makes
wobbling excitation ing.0 nuclei possible.

The second consequence of the formulation adopted in
Ref. [23] is that the three moments of inertia are automati-
cally vrot dependent even when the mean-field parameters
are fixed constant. This is essential in order to explain the
observedvrot dependence ofvwob—decreasingas vrot in-
creases. Otherwisevwob is proportional tovrot.

Another important feature of the data is that the interband
BsE2d values between the wobbling and the yrast TSD bands
are surprisingly large. Our RPA wave function gave ex-

FIG. 2. Nilsson single-particle energy diagrams atvrot=0, (a) for 0øe2ø0.43 with g=0 and (b) for 0øgø60° with e2=0.43 for
neutrons.(c) and (d) are corresponding ones for protons. Solid and dashed curves represent even and odd parity orbitals, respectively.
Asymptotic quantum numbers of some important orbitals are explicitly indicated. Chemical potentials that give particle numbersN=96 and
Z=72 for g.0 at "vrot=0.25 MeV are also indicated in(b) and (d).
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tremely collectiveBsE2dout that gathereducn=wobu.0.6–0.8
in the sum rule[Eq. (25)] but the result accounted for only
about one-half of the measured one.

To elucidate these findings more, in the following we ex-
tend our numerical analyses putting a special emphasis on
the g dependence of the moments of inertia in Sec III B.
Dependence on other parameters is also studied in detail.
Features in common and different between even-even and
odd-A nuclei are also pointed out. In Sec. III C, we discuss
vrot dependence. In Sec. III D, characteristics ofBsE2dout are
discussed. Calculations are performed in five major shells;
Nosc=3–7 for neutrons andNosc=2–6 for protons. The
strengthsvls andvll in Eq. (3) are taken from Ref.[28].

B. Dependence on the mean-field parameters
g, «2, and D

1. The even-even nucleus168Hf

Hafnium-168 is the first even-even nucleus in which TSD
bands were observed[29]. In this nucleus three TSD bands
were observed but interbandg rays connecting them have
not been observed yet. This means that the character of the
excited bands has not been established, although we expect
at least one of them is wobbling excitation. An important
feature of the data is that the average transition quadrupole
moment was determined asQt=11.4−1.2

+1.1 e b. This imposes a

moderate constraint on the shape. Referring to the weak pa-
rameter dependence discussed later, we choosee2=0.43, g
=20°, andDn=Dp=0.3 MeV, which reproduce the observed
Qt, as a typical mean-field parameter set.

First we study the dependence of various quantities ong
and other mean-field parameters at"vrot=0.25 MeV. Around
this frequency thespi13/2d2 alignment that is essential for
making wobbling excitation ing.0 nuclei possible is com-
pleted and therefore the wobbling motion is expected to
emerge above this frequency(see Fig. 7 shown later).

Figure 1 shows dependence ong calculated with keeping
e2=0.43 andDn=Dp=0.3 MeV. Figure 1(a) graphs the cal-
culated excitation energy in the rotating frame,"vwob. As g
comes close to 0(symmetric about thez axis) and −60°
(symmetric about they axis), vwob approaches 0, see Eq.
(12). We did not obtain any low-lying RPA solutions at
aroundg=40° whereas a collective solution appears again
for 50°øgø60°.

Figure 1(b) shows the calculated moments of inertia.
Their g dependence resembles the irrotational, the so-called
g-reversed, and the rigid-body moments of inertia, ing,0,
0,g,40°, and 50°øgø60°, respectively. These model
moments of inertia are given by

Jk
irr = 4Bb2 sin2Sg +

2

3
pkD , s26d

FIG. 3. Deformation dependence of(a) exci-
tation energy of the wobbling motion,(b) expec-
tation values of angular momenta in the yrast
state, and(c) transition quadrupole moment in the
yrast state in 168Hf, calculated at "vrot

=0.25 MeV withg=20° andDn=Dp=0.3 MeV.

FIG. 4. Pairing gap dependence of(a) excita-
tion energy of the wobbling motion and(b) ex-
pectation values of angular momenta in the yrast
state in 168Hf, calculated at"vrot=0.25 MeV
with e2=0.43 andg=20°. Dn=Dp is assumed for
simplicity.
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Jk
rev = 4Bb2 sin2S− g +

2

3
pkD , s27d

and

Jk
rig = J0F1 −Î 5

4p
b cosSg +

2

3
pkDG , s28d

where k=1–3 denote thex–z principal axes,B the irrota-
tional mass parameter,J0 the rigid moment of inertia in the
spherical limit, andb is a deformation parameter likee2. The
g-reversed moment of inertia was introduced to describe
positive-g rotations in the particle-rotor modelf3g but its
physical meaning has not been very clear; in particular, it
does not fulfill the quantum-mechanical requirement that the
rotations about the symmetry axis should be forbidden. We
have clarified in the preceding paperf23g that the contribu-
tions from aligned quasiparticles superimposed on
irrotational-like moments of inertiasJx,Jyd can realize
Jx.Jy and this is the very reason why the wobbling exci-
tation fsee Eq.s12dg appears in positive-g nuclei. We also
discussed that multiple alignments could eventually lead to a
rigid-body-like moment of inertia. Figure 1scd indicates that,
in the present calculation in which configuration is specified
as the adiabatic quasiparticle vacuum at eachvrot, two pi13/2
protons align forg.0 as mentioned above while they
have not fully aligned forg,0 at thisvrot. In other words,
these figures cover both regions in which thespi13/2d2

alignment is necessarysg.0d and that is not necessary
sg,0d for obtaining wobbling excitations. This aligned
angular momentum determines the overallg dependence
of Jx in Fig. 1sbd. As for the neutron part, corresponding
to the disappearance of the solution at aroundg=40°, the
expectation value of the neutron angular momentum,kJxln,
drops around this region.

To look at this more closely, we investigate the Nilsson
single-particle diagram atvrot=0. Figure 2(a) graphs neutron
single-particle energies for 0øe2ø0.43 with g=0, while

Fig. 2(b) for 0øgø60° with e2=0.43. The chemical poten-
tial that gives correct neutron numberN=96 for g.0 at
"vrot=0.25 MeV is also drawn in the latter. This figure
clearly shows that with thise2 a shell gap exists forg
&20° at N=96. And by comparing this with Fig. 1 we see
that the dropping ofkJxln is a consequence of the deoccupa-
tion of the orbital that isf651 1/2g at g=0 (hereafter simply
referred to as thef651 1/2g orbital even atgÞ0) originating
from the mixedsg9/2-i11/2d spherical shell. Figure 2(b) also
explains the reason why the wobbling excitation revives at
aroundg=50° again; the occupation of other oblate-favoring
orbitals such asf503 7/2g makes it possible and leads to a
rigid-body-like behavior of the moments of inertia. Figures
2(c) and 2(d) are corresponding ones for protons. This indi-
cates that the proton shell gap is robuster.

Figure 1(d) graphs the quadrupole transition amplitudes
TKsK=1,2d associated with the wobbling mode.[TK corre-
sponds tos−1dK−1QK in Ref. [15].] This shows that their
relative sign changes with that ofg as discussed in Refs.
[14,15]. This feature can be understood as follows:g,0 is
the g-vibrational region because theK=2 component is
dominant[see alsoJx.Jy

seffd andJz
seffd.0 in Fig. 1(b)], and

the mixing of theK=1 component due to triaxiality and ro-

FIG. 5. The same as Fig. 1 but for167Lu.

FIG. 6. Energies of the lowestfpsNosc=6dg2 two quasiparticle
states in168Hf and 167Lu, calculated at the same time in Figs. 1 and
5, respectively.
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tation gives rise to the character of the wobbling motion.
This relative sign leads to a selection rule of the interband
transition probabilitiesBsE2dout [15]. In the present case we
obtain BsE2:I → I −1dout_BsE2:I → I +1dout for g_0, and
typically their ratio to the in-band ones isBsE2:I → I
−1dout/BsE2:I → I −2din,0.1.

Figure 3 shows dependence one2 calculated with keeping
g=20° andDn=Dp=0.3 MeV. The steep rises at arounde2
=0.33 in Figs. 3(a) and 3(b) indicate the necessity of the
spi13/2d2 [thef660 1/2g orbital in Fig. 2(c)] alignment for the
appearance of the wobbling mode although the critical value
of e2 itself is frequency dependent. Aside from this,vwob is
almost constant in the calculated range. The slight increase at
arounde2=0.4 stems from the occupation of thenf651 1/2g
orbital. We have confirmed that in this case thesn j15/2d2

alignment at arounde2=0.47 seen in Fig. 3(b) does not affect
vwob visibly sinceDJy

seffd in this case is almost the same as
DJx although its reason is not clear. Figure 3(c) graphsQt.
This figure indicates that the chosen shapee2=0.43 andg
=20° reproduces the measuredQt.

Figure 4(a) shows dependence on the pairing gaps. Since
we do not have detailed information about the gaps, we as-
sumeDn=Dp for simplicity. This figure shows that the de-
pendence on the gaps is weak unless they are too large. Since
the static pairing gapD is expected to be small, say,D
ø0.6 MeV, in the observed frequency range,vwob is not
sensitive to the value ofD. This is a striking contrast to theb
and g vibrations; it is well known that pairing gaps are in-
dispensable for them. Here we note that the behavior of the
vwob correlates well withkJxlp presented in Fig. 4(b).

2. The odd-A nucleus167Lu

Next we study167Lu in a way similar to the preceding
168Hf case. We chooseg=20° andDn=Dp=0.3 MeV as rep-
resentative mean-field parameters as above. As fore2, how-
ever, we examined various possibilities becauseQt has not
been measured in this nucleus. Since the sensitivee2 depen-
dence through the occupation of thenf651 1/2g orbital ap-

pears only at"vrot.0.4 MeV and therefore the “bandhead”
properties do not depend one2 qualitatively, first we discuss
them adoptinge2=0.43 in order to look at the difference
between the even-even and the odd-Z cases.

Figure 5 shows dependence ong at "vrot=0.25 MeV with
keepinge2=0.43 andDn=Dp=0.3 MeV constant. Figure 5(a)
graphsvwob. In theg.0 region, the solution is quite similar
to the168Hf case. In theg,0 region, for −60°øg&−30° it
is quite similar again but for −30°&g,0 its character is
completely different. In this region the presented solution is
the lowest in energy and becomes collective gradually asg
decreases. The largeness ofvwob corresponds to that ofJx

−Jy
seffd in Fig. 5(b). Comparison of Figs. 5(c) and 1(c) certi-

fies that the alignment of thepi13/2 quasiparticle(s) is almost
complete forg.0 whereas less forg,0. This produces
quantitative even-odd differences as explained below.

Having confirmed that these features are independent of
e2 andN except that we did not obtain any low-lying solu-
tions for 35°&gø60° in the small-e2 cases, we look into
underlying unperturbed 2QP energies to see the even-odd
difference. In Fig. 6 we present the energies of the lowest
fpsNosc=6dg2 states which represent the biggest difference.
In the yrastspi13/2d2 configuration,Ap and Bp in the usual
notation are occupied in the even-Z case, the lowest 2QP

FIG. 7. Rotational frequency dependence of
(a) excitation energy of the wobbling motion,(b)
expectation values of angular momenta in the
yrast state, and(c) three moments of inertia asso-
ciated with the wobbling motion in168Hf, calcu-
lated with e2=0.43, g=20°, and Dn=Dp

=0.3 MeV.

FIG. 8. Rotational frequency dependence of excitation energy of
the wobbling motion in174Hf, calculated withe2=0.453,g=16°,
andDn=Dp=0.3 MeV.
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state of signaturea=1 with respect to this isB̄pCp [where −
denotes the conjugate state, see Eq.(4)]. In the odd-Z case in

which Ap is occupied, the lowest one isBpĀp. Since botheBp
8

ande
Āp

8 decrease asg decreases, this 2QP state becomes the

dominant component in the lowest-energy RPA solution.
Note here that the sumeBp

8 +e
Āp

8 corresponds to the signature

splitting betweenAp and Bp when they are seen from the

usual even-even vacuum. Since bothBp and Āp are of K
=1/2 character, the resulting RPA solution cannot have the
K=2 collectivity as shown in Fig. 5(d). According to the
relation [15]

Jy
seffd

Jx
= 31 +

vwob

vrot

sin g

sin Sg +
4

3
pD

T1

T24
−1

, s29d

Jy
seffd in Fig. 5sbd becomes small for −30°&g,0. This

discussion serves to exclude the possibility ofg.−20° for
the TSDs that support collective wobbling excitations in

the odd-Z cases, whereas the even-odd difference ing.0
is merely quantitative.

C. Dependence on the rotational frequencyvrot

1. 168Hf and 174Hf

The analyses above indicate that the chosen mean-field
parameters are reasonable, and therefore we proceed to study
vrot dependence with keeping these parameters constant. Fig-
ure 7 shows the result for168Hf. These figures indicate again
the spi13/2d2 alignment that makesJx larger thanJy

seffd is
indispensable for the formation of the wobbling excitation.
At around"vrot=0.45 MeV thesn j15/2d2 alignment occurs. In
contrast to the low-frequency case reported in Fig. 3, in the
present case its effect onvwob is visible as a small bump.
Although the character of the observed excited TSD bands
has not been resolved, some anomaly is seen at around this
vrot in one of them[29]. We suggest that this is related to the
sn j15/2d2 alignment since this is the only alignable orbital in
this frequency region of this shape. However we note that in
167Lu an interaction with a normal deformed state at around
this frequency is discussed in Ref.[22].

FIG. 9. The same as Fig. 7 but for167Lu. Ex-
perimental values taken from Ref.[22] are also
included in(a).

FIG. 10. InterbandE2 transition rates forI (wobbling on yrast TSD) →I ±1 (yrast TSD) transitions in(a) 168Hf and (b) 167Lu. The latter
is presented as functions of 23 spin I, while the former is presented as functions of the rotational frequency since experimental spin
assignment has not been done for168Hf. The rotational-frequency range corresponding to(b) is very narrow in comparison to(a). Interband
transition rates are divided by the in-band ones. Experimental values[22] are also shown in(b). Noting that, for167Lu, the statesI +1 (TSD1)
are slightly higher in energy thanI (TSD2) at I .51/2" and BsTl ; I → I +1d.BsTl ; I +1→ Id holds at high spins, we plotted those forI
→ I +1 at the places with the abscissasI +1 in order to show clearly their characteristic staggering behavior.

MATSUZAKI, SHIMIZU, AND MATSUYANAGI PHYSICAL REVIEW C 69, 034325(2004)

034325-8



We performed calculations also forg=−20°. In that case,
however, wobbling excitation exists only at smallvrot be-
causeJx−Jy

seffd is small as seen from Fig. 1(b).
Very recently TSD bands were observed in another even-

even nucleus,174Hf [30]. It is not trivial if a similar band
structure is observed in the nucleus with six neutrons more
since the existence of the TSD states depends on the shell
gap. Multiple TSD bands were observed but connectingg
rays have not been resolved also in this nucleus. We per-
formed a calculation adoptinge2=0.453 andg=16° sug-
gested in Ref.[30] andDn=Dp=0.3 MeV. The result is pre-
sented in Fig. 8. The most striking difference from the case
of 168Hf above is thatvwob decreases steadily asvrot in-
creases after thespi13/2d2 alignment is completed. This is
because thesn j15/2d2 alignment that causes the small bump in
the168Hf case shifts to very lowvrot due to the larger neutron
number.

2. 167Lu

The wobbling excitation was first observed experimen-
tally in 163Lu [19], later it was also observed in165Lu [21]
and 167Lu [22]. The characteristic features common to these
isotopes are(1) vwob decreases asvrot increases contrary to
the consequence of calculations adopting constant moments
of inertia and (2) BsE2:I → I −1dout/BsE2:I → I −2din is
large—typically around 0.2.

Here we concentrate on the isotone of168Hf discussed
above, that is,167Lu in order to see the even-odd difference.
A comparison of Figs. 7 and 9 proves that all the differences
are due to the fact that the number of the alignedpi13/2
quasiparticle is less by one:(1) the spi13/2d2 alignment at
around"vrot=0.2 MeV is absent and(2) the BpCp crossing
occurs at around"vrot=0.55 MeV, which is proper to the
spi13/2d1 configuration. Figure 9(a) shows that our calculation
does not reproduce the data, although in each frequency
range in which the configuration is the samevwob decreases
at highvrot as in the cases of the even-even nuclei presented
above. This result might indicate that there is room for im-
proving the mean field. TheJx in Fig. 9(c) is larger than the
experimentally deduced value by about 20–30 %. This is
due to the spurious velocity dependence of the Nilsson po-
tential mentioned in Sec. II.

D. Interband B„E2… transitions

Compared to the excitation energy, the interbandBsE2d
values relative to the in-band ones have been measured in
only few cases. In Fig. 10, we report calculatedBsE2d ratios
for I (wobbling on yrast TSD) →I ±1 (yrast TSD) transitions
in 168Hf and 167Lu. The measured ones are also included for
the latter.

The first point is the magnitude of the largersI → I −1d
ones. Apparently, the calculatedBsE2d values are smaller by
factor 2–3. The measured interbandBsE2d values amount
almost to the macroscopic rotor value. In the RPA calcula-
tions, as summarized in Sec. II, theBsE2d value is reduced
by a factorcn=wob

2 [see Eq.(24)]: only in the case with the
full-strengthcn=wob

2 =1 the rotor value is recovered. Although

the obtained RPA wobbling solutions are extremely collec-
tive in comparison with the usual low-lying collective vibra-
tions, such as theb or g vibrations, for which typicallyucnu
.0.3–0.4, this factor is stillucn=wobu.0.6–0.8. This is the
main reason why the calculatedBsE2d values are a factor
2–3 off the measured ones. As is well known, giant reso-
nances also carry considerable amount of quadrupole
strengths, so it seems difficult for the microscopic correction
factor cn=wob

2 to be unity; it is not impossible, however, be-
cause the “sum rule” discussed in Sec. II is not the sum of
positive-definite terms. In the RPA formalism, the reduction
factor cn=wob

2 for the BsE2d value, Eq.(24), comes from the
fact that the wobbling motion is composed of the coherent
motion of two quasiparticles, and reflects the microscopic
structure of collective RPA solutions. The measurement that
the BsE2d value suffers almost no reduction may be a chal-
lenge to the microscopic RPA theory in the case of the wob-
bling motion. CalculatedBsE2d ratios for 174Hf are slightly
smaller than those for168Hf in Fig. 10(a).

The second point is the staggering, that is, the difference
betweenI → I ±1. We clarified [15] its unique correspon-
dence to the sign ofg as mentioned in Sec. III B; that holds
for both even-even and odd-A systems. Recently this stag-
gering was discussed from a different point of view[31], but
it looks to apply only tog,0 cases.

IV. CONCLUSION

The nuclear wobbling motion, which is a firm evidence of
stable triaxial deformations, was identified experimentally in
the triaxial superdeformed odd-A Lu isotopes. In principle,
wobbling excitation is possible both ing.0 andg,0 nu-
clei. Every information, theoretical and experimental, sug-
gestsg.0 for these bands. According to the wobbling fre-
quency formula[8], cf. Eq. (12), its excitation in nuclei
rotating principally about thex axis requiresJx.Jy,Jz, al-
though irrotational-like model moments of inertia give
Jx,Jy for g.0. To solve this puzzle, we studied the
nuclear wobbling motion, in particular, the three moments of
inertia associated with it in terms of the cranked shell model
plus random phase approximation. This makes it possible to
calculate the moments of inertia of the whole system includ-
ing the effect of aligned quasiparticle(s). The results indicate
that theg dependence of the calculated moment of inertia is
basically irrotational-like(Jx_Jy for g+0) if aligned qua-
siparticle(s) (pi13/2 in the present case) does not exist. But
once it is excited, it produces an additional contribution,
DJx= iQP/vrot, and consequently can lead toJx.Jy even for
g.0. This is the very reason why wobbling excitation exists
in g.0 nuclei. In this sense, the wobbling motion is a col-
lective motion that is sensitive to the single-particle align-
ments.

The resulting moment of inertia for 0,g&30° resembles
theg-reversed one, i.e., the irrotational moment of inertia but
with Jx andJy being interchanged. That for 50°&g&60°,
where single-particle angular momenta dominate, is rigid-
body-like. That forg,0 is irrotational-like except for odd-A
nuclei with −30°&g,0 where a specific 2QP state deter-
mines the lowest RPA solution.
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Having studied qualitative features of the three moments
of inertia at a low rotational frequency, we calculated wob-
bling bands up to highvrot. Experimentally they were con-
firmed only in odd-A Lu isotopes as mentioned above. The
most characteristic feature of the data is thatvwob decreases
asvrot increases. This obviously excludes constant moments
of inertia. In our calculation three moments of inertia are
automaticallyvrot dependent even when mean-field param-
eters are fixed constant. It should be stressed that the wob-
blinglike solution in our RPA calculations is insensitive to
the mean-field parameters, especially to the pairing gaps, as
is shown in Sec. III B 1. This distinguishes the wobblinglike
solution from the usual collective vibrations, which are sen-
sitive to the pairing correlations. Thus, our microscopic RPA
calculation confirms that the observed band is associated
with a new type of collective excitation, although compari-

sons to the observed excitation energy indicate that there is
room for improving the calculation.

As for the interband transition rates, our calculation ac-
counted for only about one-half or less of the measured ones,
even though the wobblinglike solution is extremely collec-
tive compared to the usual vibrational modes. This issue is
independent of the details of choosing parameters. This con-
fronts microscopic theories with a big challenge.
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