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Nuclear moments of inertia and wobbling motions in triaxial superdeformed nuclei
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The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked shell model
plus random phase approximation. First, by calculating at a low rotational frequengydiagendence of the
three moments of inertia associated with the wobbling motion, the mechanism of the appearance of the
wobbling motion in positivey nuclei is clarified theoretically—the rotational alignment of thigs,, quasipar-
ticle(s) is the essential condition. This indicates that the wobbling motion is a collective motion that is sensitive
to the single-particle alignment. Second, we prove that the observed unexpected rotational-frequency depen-
dence of the wobbling frequency is an outcome of the rotational-frequency dependent dynamical moments of
inertia.
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[. INTRODUCTION dence to experimental information has not been very clear.
These studies indicate the necessity of high-spin states in
Deformation of the nuclear shape from spherical symmetstaply and stronglyy-deformed nuclei. Bengtsson studied
ric one has long been one of the most important issues iRigh-spin states arount$*Hf [17] and found systematic ex-
nuclear structure physics. Among them, searches for evistence of the TSOtriaxial superdeformed or strongly de-
dences of the triaxialY,, or y) one have been pursued long formed states withe, ~ 0.4 and 3| ~ 20°. This confirmed the
time, for example, the even-odd energy staggering in thejiscussion on the shell gap it 94 in Ref.[18], the work in
low-spin part of they bands[1], the signature dependence of \hich the yrast TSD band iff3_u was reported; in 2000 an
the energy spectra, and thE2/M1 transition rates in excited TSD band was observed in this nucleus and from the
medium-spin odd-odd and odsinuclei[2—4], properties of  sirengths of the interbar? transition rates this was unam-
the K isomers[5,6], and so on. But their results have not piguously identified with the wobbling motiofL9]. These
been conclusive; making a clear distinction between thejatg were analyzed by using a particle-rotor md@é} and
static and the dynamigvibrationa) ones has not been suc- the E2 transition rates were reproduced well. Subsequently
cessful up to now. Theoretically, appearance of the wobblingrsp pands were found in some Lu and Hf isotopes and
motion, which is well known in classical mechanics of asym-yohbling excitations were observed also#161u [21,22.
metric tops[7] and whose quantum analog was discussed i close look at these data, however, tells us that the sign of
terms of a rotor model about 30 years g8, is a decisive  thejr ,-deformation seems to contradict to an irrotational
evidence of static triaxial deformations. Subsequently its mimotion and that the unexpected behavior of the wobbling
croscopic descriptions were developed by several authorﬁequency has not been explained yet.
[9,10Q. Since the small—amplitl_Jde Wobblin_g mode carries the  Thys in the preceding Rapid Communicati@3] we pre-
same quantum numbers, parity=+ and signaturer=1, as  sented an answer to these problems. In the present paper,
the odd-spin members of the band, Ref.[11] anticipated  after summarizing the discussion there we extend numerical

that it would appear as a high-spin continuation of the analyses to elucidate it. An emphasis is put on the behavior
band, but it has not been resolved that in what nUC|e|, at thsf the calculated dynamic moments of inertia.

spins, and with whay wobbling modes would be observed.
Shimizu and Matsuyanai 2] and Onishi13] performed

extensive numerical calculations for normally deformed Er !l. WOBBLING MOTION IN TERMS OF THE RANDOM

isotopes with relatively smally|. Matsuzaki[14], Shimizu PHASE APPROXIMATION

and Matsuzakj15], and Horibata and OnisljiL6] also stud-

ied 1205 with relatively large negative but their correspon- e Start from a one-body Hamiltonian in the rotating

frame,
_ _ h' =h-fiwedy, (1)
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In Eq. (2), 7=1 and 2 stand for neutron and proton, respecwhich is independent oi(f<")s. This expression proves that
tively, and chemical potentials, are determined so as to the spuriousNambu-Goldstonemode given by the first fac-
give correct average particle numbeis,). The oscillator tor and all normal modes given by the second are decoupled
frequencies in Eq(3) are expressed by the quadrupole de-from each other. Hergf,=(J,)/ w,o; @s usual and the de-
formation parameters, and y in the usual way. They are tailed expressions ofj(y‘ff)(wn) are given in Refs.

treated as parameters as well as pairing gapsThe orbital  [10,14,19. Among normal modes, one obtains
angular momentuni in Eg. (3) is defined in the singly

stretched coordinateg = \/(wy/ wg)X,, with k=1-3denoting ) , [Jx— ji,eﬁ)(wwob)][jx— TN (w001
Xx—z, and the corresponding momenta. By diagonalizing Wyob = Drot T4 b)j(eff)(w 0 (12)
at eachw,,;, we obtain quasiparticléQP) orbitals and the y tTwopez TTWO
nuclear yras(OQP) state. Sincéh’ conserves parityr and by putting w,=w,, Note that this gives a real excitation
signature o, nuclear states can be labeled by them.gny when the right-hand side is positive and it is non-
Nuclear states with QP excitations are obtained by exXtrivial whether a collective solution appears or not. Evi-
changing the QP energy and wave functions such as  dently this coincides with the form derived by Bohr and
, , Mottelson in a rotor mode[8] and known in classical
(—€, VU — (€5UnV), (4)  mechanicg7], aside from the crucial feature that the mo-
ments of inertia arevw,,; dependent in the present case.
One drawback in our formulation is that oy tends to
be larger than corresponding experimental values because of
the spurious velocity dependence of the Nilsson potential as
discussed in Ref424,25. A remedy for this was discussed
Mhere but that forj(ef) has not been devised yet. Therefore
we assume for the present that a similar discussion holds for
the latter, and accordingly the rat@‘f)(wwob)/jx which

where u denotes the signature partner wof

We perform the random phase approximati&PA) to
the residual pairing plus doubly stretched quadrupole
quadrupole(Q”-Q") interaction between QPs. Since we are
interested in the wobbling motion that has a definite quantu
number,a=1, only two components out of five of thig' -Q”
interaction are relevant. They are given by

o 1 it (it actually determineso,,., is more reliable than its absolute
Hint = -3 2 kTR, (5 magnitude.
K=1,2 Interband electric quadrupole transitions betweennihe

where the doubly stretched quadrupole operators are defineed(Cited band and the yrast are given as
by

N BEZ, — (1 Dy = 5(THETEN? (13
Q= QK(Xk — X = _Xk> ; (6)
@o in terms of
and those with good signature are 7
*) 1 T(KEEI = eK-I—K,n- (14)
K = Ml—TM(QK + Q). (7)

They will be abbreviated aB(E2),,; later for simplicity.

The residual pairing interaction does not contribute becausi-band ones are given as
P, is an operator withw=0. The equation of motion

A 2
a2 —1-2=3( 2y L) as

[h' +H{ X Trpa = hiwpX? (8)
for the eigenmode in terms of
(a=%1/2) E Z
Xi= 3 [gn(uv)alal+ ey(ur)aa,] (9) Q") =e Q. (16)
m<v

and assumed to be common to all bands. They will be ab-
breviated a83(E2);,. Here we adopted a high-spin approxi-
mation[26]. The transition quadrupole momeg is ex-
T n=(QY, X1]). (100  tracted fromB(E2);, by the usual rotor-model prescription.
' To compare collectivities of these two typesE# transi-
Then, by assuming # 0, this can be cagtl0] into the form  tions, we introduce a pair of deformation parameters

leads to a pair of coupled equations for the transition ampli
tudes
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15 1 NE This transformation relates the ratiog, andr,, to the mo-
R = | — (2= ={ =0l - o) , . . .
ay =1/ 167r< ) 5~ 5 ments of inertig 15]:
. e 1 (Wz,n>l/4
15 yn = Cn s
Rea, = \| 1 —0¢ ~y) =(Q5). (17) V2 Wy
167
1/4
Then it is evident that the in-band one is expressed as o= UnCn;<Wx'n) (22)
. - V2L \ W,
. _ 9\ =_ (BE) _ (E)\2
B(E2I —1-2)= 2R4(ay a )" (18) wherec, is a real amplitude that relates the dynamic ampli-

tude Ty , and the moment of inertiag, is the sign of(J7,

As for the interband ones, by expandi@q’ by X[s andX.s,  _ /) (so ,,>0 for wobblinglike RPA solutions and
wheren runs both normal modes and the Nambu-Goldstone

mode X{c=1/+2I (J,+iJ,), we obtain from[Q{”,Q5"]=0 W, = 175 (w,) - 117,

a kind of sum rule

5 W, = LT (w,) = 117, (23
> TinTon=- I—R4ayaz. (19

n£NG Thus, the interban®(E2) is rewritten as

Consecutively introducing the ratios of the dynamic to static  g(E2:1 — (I +1)y,5¢)
deformations, Y

1 W. 1/4 _
 Tin :Twcﬁ[a(yE)(W—z'n) F onay’
"= PRy’
2R ey, W\ 142
x(—m) , (24
T Wz,n
r,n=——22 (20) . . . .
' 2R%a, which coincides with the formula given by the rotor model
[8], except for the appearance of the amplitwgdeand sign
the sum rule above reads oy Substituting the ratios, , andr,, into Eq.(21), one finds
1 that the amplitudes should satisfy
2 Fynlzn= E (21) 9
n#£NG > oci=1. (25)

The dynamic amplitude$y , describe shape fluctuations as- NG

sociated with the vibrational motion in the uniformly rotating This form of sum rule clearly indicates that the amplitude
frame. Transformation to the body-fixe@rincipal axi3  c, is a microscopic correction factor quantifying the collec-
frame[10] turns the shape fluctuation into the fluctuation of tivity of the wobbling motion, for Whichcﬁzl means the

the angular momentum vector, i.e., the wobbling motion.full collectivity and reproduces the results of the macro-
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FIG. 2. Nilsson single-particle energy diagramsagf;=0, () for 0=<¢e,<0.43 with y=0 and(b) for 0= y=<60° with €,=0.43 for
neutrons.(c) and (d) are corresponding ones for protons. Solid and dashed curves represent even and odd parity orbitals, respectively.
Asymptotic quantum numbers of some important orbitals are explicitly indicated. Chemical potentials that give particle NsBiBeasd
Z=72 for y>0 athw,;;=0.25 MeV are also indicated iflb) and(d).

scopic rotor model in both the energy and the interbandations, where7,> 7,> 7, for y=+20° and they lead to an

B(E2) values. imaginary wobbling frequencyo,q,. It is, however, noted
that the moments of inertia of the particle-rotor model are
IIl. NUMERICAL CALCULATION AND DISCUSSION those (_)f _the rotor and no effect of the single-p_article align-
_ ments is included, so that they do not necessarily correspond
A. Summary of the preceding study to those calculated in our RPA formalism.

Since the first experimental confirmation of the wobbling N the preceding papef23] we have performed micro-
excitation in63_u [19], y= +20° has been widely accepted SCOPiC RPA calculations without dividing the system artifi-
as the shape of the TSD states in this region. This is predomfially into the rotor and particles. That work proved that for
nantly because the calculated energy minimum fo the calculated moment of inertigh,=(J,)/ w,o, the contribu-
+20° is deeper than that foy=-20° [17] according to the tion from the aligned QB), AJ,=igp/ wyo; With igp being the
shape driving effect of the alignedii 5, quasiparticle. The aligned angular momentum, is superimposed on an
recent precise measurements®f27] also support this. On irrotational-like moment of inertid 7, > 7,) of the “core.”
the other hand, the sign of deformation leads to different Consequently the total/; is larger than7,, which makes
consequences on moments of inertia, which are directly conwobbling excitation iny>0 nuclei possible.
nected to the excitation energy of the wobbling mode The second consequence of the formulation adopted in
through the wobbling frequency formul@], cf. Eq. (12). Ref. [23] is that the three moments of inertia are automati-
Since the RPA is a microscopic formalism, no distinctioncally w,,; dependent even when the mean-field parameters
between the collective rotation and the single-particle deare fixed constant. This is essential in order to explain the
grees of freedom has been made. observedw,,; dependence ob,,,;—decreasingas w,y; in-

Therefore, the moments of inertia calculated in our RPAcreases. Otherwise,,q, is proportional towg;.
formalism in Sec. Il are those for rotational motions of the  Another important feature of the data is that the interband
whole system. In contrast, the macroscopic irrotational-likeB(E2) values between the wobbling and the yrast TSD bands
moments of inertia are often used in the particle-rotor calcuare surprisingly large. Our RPA wave function gave ex-
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tremely collectiveB(E2),,; that gatheredc-,,, =0.6—0.8

in the sum rulgEqg. (25)] but the result accounted for only

about one-half of the measured one.

FIG. 3. Deformation dependence @) exci-
tation energy of the wobbling motioiib) expec-
tation values of angular momenta in the yrast
state, andc) transition quadrupole moment in the
yrast state in 18Hf, calculated at Aoy
=0.25 MeV with y=20° andA,=A,=0.3 MeV.

0.5

moderate constraint on the shape. Referring to the weak pa-
rameter dependence discussed later, we ches8.43, v
=20°, andA,=A,=0.3 MeV, which reproduce the observed

To elucidate these findings more, in the following we ex-Q;, as a typical mean-field parameter set.
tend our numerical analyses putting a special emphasis on First we study the dependence of various quantitiesyon
the y dependence of the moments of inertia in Sec Ill B.and other mean-field parametersiat,=0.25 MeV. Around
Dependence on other parameters is also studied in detathis frequency the(miiz,)? alignment that is essential for

Features in common and different between even-even

anuaking wobbling excitation iny>0 nuclei possible is com-

odd-A nuclei are also pointed out. In Sec. Il C, we discusspleted and therefore the wobbling motion is expected to

w;o dependence. In Sec. Il D, characteristicBoE?2),,, are

discussed. Calculations are performed in five major shells;

Nosc=3—7 for neutrons andN,,=2-6 for protons. The
strengths;s andy); in Eq. (3) are taken from Refl28].

B. Dependence on the mean-field parameters

emerge above this frequen¢see Fig. 7 shown latgr

Figure 1 shows dependence grtalculated with keeping
€,=0.43 andA,=A,=0.3 MeV. Figure 1a) graphs the cal-
culated excitation energy in the rotating framiey,,qp. AS y
comes close to @symmetric about the axis) and -60°
(symmetric about the axis), wye, approaches 0, see Eq.

(12). We did not obtain any low-lying RPA solutions at
around y=40° whereas a collective solution appears again
for 50° < y<60°.
D Figure Xb) shows the calculated moments of inertia.
Their y dependence resembles the irrotational, the so-called

¥, €5, and A
1. The even-even nucleu$8Hf

Hafnium-168 is the first even-even nucleus in which TS
bands were observd@9]. In this nucleus three TSD bands S T
were observed but interbang rays connecting them have Y'Ve"erse‘j' and the ”g'd'bofy momen'ts of inertiayit 0,
not been observed yet. This means that the character of tfpe< y=<40°, gnd .50% L 60°, respectively. These model
excited bands has not been established, although we expé@Pments of inertia are given by
at least one of them is wobbling excitation. An important
feature of the data is that the average transition quadrupole

X L 26
moment was determined &=11.4173e b. This imposes a (26

Ji" = 4Bp? sin2<y+ %k),

1 . . 30

wl® w| @ e
% 20 FIG. 4. Pairing gap dependence(@j excita-
s 067 = B R — tion energy of the wobbling motion ang) ex-
_:g 0.4 3 \\\\ pectation values of angular momenta in the yrast
& 10 N state in 1%8Hf, calculated atfiw,,=0.25 MeV

0.2 x 5 with €,=0.43 andy=20°. A,=A, is assumed for

0 0 simplicity.
0 02 04 06 08 1 0 02 04 06 08 1
A=A, (MeV) A=A (MeV)

034325-5



MATSUZAKI, SHIMIZU, AND MATSUYANAGI PHYSICAL REVIEW C 69, 034325(2004

1
08
0.6

0.4

02 /\ /\/
a)
20 40 [3

AWyon (MeV)

0
60 40 -20 O

0

¥ (deg)
FIG. 5. The same as Fig. 1 but féLu.
30 200
neutron 3
25 proton ——— Vo h
00 /7 S
20 ¢ v
s , T, N
3 _ - =
10 <= ” N \
L =] ——
5 () K=2 —me @
0 -200
60 -40 20 0 20 40 60 60 -40 20 0 20 40 60
7(deg) 1(deg)
_ 2 Fig. 2(b) for 0= y=<60° with ,£=0.43. The chemical poten-
Ji'=4Bp? 5'”2(‘ 7+§7Tk)’ (27)  tial that gives correct neutron numbdi=96 for y>0 at
hw=0.25 MeV is also drawn in the latter. This figure
and clearly shows that with this, a shell gap exists fory
=20° atN=96. And by comparing this with Fig. 1 we see
kig - \70{1 — A /ilg cos<y+ zﬁkﬂ’ (28) that the dropp_ing otJX>_n is a consequence of the depccupa—
4 3 tion of the orbital that i§651 1/2 at y=0 (hereafter simply

where k=1—3 denote thex—z principal axes}B the irrota- referred to as thge51 1/2 orbital even aty# 0) originating

tional mass parameteg, the rigid moment of inertia in the 1M the mixed(ge/>-i1y/) Spherical shell. Figure(8) also
spherical limit, and3 is a deformation parameter likg. The explains the reason why the wobbling excitation revives at

y-reversed moment of inertia was introduced to describéroundy=50° again; the occupation of other oblate-favoring
positive-y rotations in the particle-rotor modéB] but its ~ Orbitals such ag503 7/2 makes it possible and leads to a
physical meaning has not been very clear; in particular, ifigid-body-like behavior of the moments of inertia. Figures
does not fulfill the quantum-mechanical requirement that the?(©) and 2d) are corresponding ones for protons. This indi-
rotations about the symmetry axis should be forbidden. wé&ates that the proton shell gap is robuster. _
have clarified in the preceding pap@3] that the contribu- Figure Xd) graphs the quadrupole transition amplitudes
tions from aligned quasiparticles superimposed onlk(K=1,2) associated with the wobbling modgl corre-
irrotational-like moments of inertid 7, <J,) can realize ~Sponds tQ(—l)K_lQK in Ref. [15].] This shows that their
J>J, and this is the very reason why the wobbling exci- relative sign changes with that of as discussed in R_efs.
tation [see Eq.(12)] appears in positive- nuclei. We also  [14,13. This feature can be understood as follows: 0 is
discussed that multiple alignments could eventually lead to &€ y-vibrational region because th&=2 component is
rigid-body-like moment of inertia. Figure(d) indicates that, ~dominantsee alsq7,~ 7" and 7" ~0 in Fig. Ib)], and
in the present calculation in which configuration is specifiedthe mixing of theK=1 component due to triaxiality and ro-
as the adiabatic quasiparticle vacuum at eagh two i3
protons align fory>0 as mentioned above while they 3
have not fully aligned fory<0 at thisw,y. In other words, 2.5
these figures cover both regions in which thei;,)?
alignment is necessarffy>0) and that is not necessary
(y<0) for obtaining wobbling excitations. This aligned
angular momentum determines the overaltependence
of J, in Fig. 1(b). As for the neutron part, corresponding
to the disappearance of the solution at aroyw0°, the 0
expectation value of the neutron angular moment(l,, 60402 (:e) 046
drops around this region. yide

To look at this more closely, we investigate the Nilsson FIG. 6. Energies of the lowe$tr(Nys=6)]2 two quasiparticle
single-particle diagram ab,,;=0. Figure 2a) graphs neutron states in'%8Hf and 167Lu, calculated at the same time in Figs. 1 and
single-particle energies for ©e,<0.43 with y=0, while 5, respectively.

2
1.5

e"p (MeV)

1
0.5
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tation gives rise to the character of the wobbling motion.pears only atiw,,;>0.4 MeV and therefore the “bandhead”
This relative sign leads to a selection rule of the interbandgroperties do not depend @ qualitatively, first we discuss
transition probabilitieB(E2),,; [15]. In the present case we them adoptinge,=0.43 in order to look at the difference
obtain B(E2:1 —1-1),,=B(E2:1 —1+1),, for y=0, and between the even-even and the afidases.
typically their ratio to the in-band ones iB(E2:1—l Figure 5 shows dependence @t w,,=0.25 MeV with
-1)ou/B(E2:1 —1-2);,~0.1. keepinge,=0.43 andA,=A,=0.3 MeV constant. Figure(&)
Figure 3 shows dependence encalculated with keeping  9raphswyp. In the y> 0 region, the solution is quite similar
y=20° andA,=A,=0.3 MeV. The steep rises at arousg 10 the*®*Hf case. In they<0 region, for —60°< y=-30° it
=0.33 in Figs. 8) and 3b) indicate the necessity of the IS quite similar again but for -302 y<<0 its character is
(1372 [the[660 1/2 orbital in Fig. 2c)] alignment for the ~ completely .different. In this region the pregented solution is
appearance of the wobbling mode although the critical valuéhe lowest in energy and becomes collective gradually as
of ¢, itself is frequency dependent. Aside from this,,y, is decgg)a_ses._ The largenessaf,, corresponds to that afr,
almost constant in the calculated range. The slight increase at7,  in Fig. 5(b). Comparison of Figs. () and Xc) certi-
arounde,=0.4 stems from the occupation of thgs51 1/2  fies that the alignment of thei, 5, quasiparticlés) is almost
orbital. We have confirmed that in this case the;s)? Ccomplete fory>0 whereas less foy<0. This produces
alignment at around,=0.47 seen in Fig.®) does not affect ~quantitative even-odd differences as explained below.
Ouop Visibly sinceA 7™ in this case is almost the same as Having confirmed that Fhese featu_res are mde_pendent of
AJ, although its reason is not clear. FigureBgraphsQ. €2 @ndN except that we did not obtain any low-lying solu-
This figure indicates that the chosen shape0.43 andy  Uons for 35°<y<60° in the smalle, cases, we look into
=20° reproduces the measureq underlying unperturbed 2QP energies to see the even-odd

Figure 4a) shows dependence on the pairing gaps. Sincfifference. ;n Fig. 6 we present the energies of the lowest
we do not have detailed information about the gaps, we ag-"(Nosc=6)] sf[atesz which represent the biggest difference.
sumeA,=A, for simplicity. This figure shows that the de- In the yrast(mi;3,)° configuration,A, and By in the usual
pendence on the gaps is weak unless they are too large. Singgtation are occupied in the evénease, the lowest 2QP
the static pairing gap\ is expected to be small, say

<0.6 MeV, in the observed frequency range,,, is not 1
sensitive to the value df. This is a striking contrast to the 08 |
and v vibrations; it is well known that pairing gaps are in-
dispensable for them. Here we note that the behavior of the
wyop COrrelates well with(J,), presented in Fig. @). 04

2. The odd-A nucleus®Lu 02 | /_\

Next we study'®’Lu in a way similar to the preceding
1684f case. We choosg=20° andA,=A,=0.3 MeV as rep-
resentative mean-field parameters as above. Agfonow-
ever, we examined various possibilities beca@géhas not FIG. 8. Rotational frequency dependence of excitation energy of
been measured in this nucleus. Since the sensifiiepen-  the wobbling motion in'7#Hf, calculated withe,=0.453, y=16°,
dence through the occupation of thg551 1/2 orbital ap- andA,=A,=0.3 MeV.

0.6 |
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0
0 01 02 03 04 05 06 07
Bt (MeV)
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Ht (MeV) Fit (MeV) FIG. 9. The same as Fig. 7 but f&#Lu. Ex-
perimental values taken from RgR2] are also
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state of signaturer=1 with respect to this iﬁ_ipcp [where —  the oddZ cases, whereas the even-odd difference in0
denotes the conjugate state, see @3j. In the oddZ case in 1S merely quantitative.
which A, is occupied, the lowest one BA,. Since botreép C. Dependence on the rotational frequencyw,q
! .
ande, decrease ay decreases, this 2QP state becomes the 1. 1684 and 174Hf

. P . .
dominant component in the lowest-energy RPA solution.  The analyses above indicate that the chosen mean-field
Note here that the sue} +e - corresponds to the signature parameters are reasonable, and therefore we proceed to study

p . . .
splitting betweenA, and B, when they are seen from the @ dependence with keeping these parameters constant. Fig-
usual even-even vacuum. Since b} and A are of K ure 7 shows the result fdf®Hf. These figures indicate again

: P

. 2 . eff) .
=1/2 character, the resulting RPA solution cannot have théhs.(mB/Z) blah?nn:ﬁntfthat :pake%hlarge[)gr?anjy 'tlst'
K=2 collectivity as shown in Fig. (8)). According to the indispensable for the formation o > € wobbling excitation.
relation[15] At aroundzw,,;=0.45 MeV the(vjg)° alignment occurs. In

contrast to the low-frequency case reported in Fig. 3, in the
e present case its effect amy,q, is visible as a small bump.
Y -1+ =1, (29) Although the character of the observed excited TSD bands
Jx Wrot sin ( + ‘_177) T has not been resolved, some anomaly is seen at around this
Y ot IN ONe of then(29]. We suggest that this is related to the
(vj150? alignment since this is the only alignable orbital in
jfﬁ) in Fig. 5b) becomes small for -30% y<0. This this frequency region of this shape. However we note that in

discussion serves to exclude the possibilityyet—20° for ~ ¢7_u an interaction with a normal deformed state at around
the TSDs that support collective wobbling excitations inthis frequency is discussed in R¢22].

ow, SNy Ty

0.4 0.4

(a) I->1-1 —— cal —— (b)
[ 41 e exp —e—

03

NET.

0.1 |

0
0 01 02 03 04 05 06 07 40 45 50 55
firer (MeV) 21 (h)

B(E2)ou/ B(E2),
§ S =

(S w
B(E2)ou/B(E2)iy

=]
-

FIG. 10. InterbandE2 transition rates fot (wobbling on yrast TSP—I+1 (yrast TSD transitions in(a) 1%8Hf and (b) 67Lu. The latter
is presented as functions ofx2spin I, while the former is presented as functions of the rotational frequency since experimental spin
assignment has not been done ¥§iHf. The rotational-frequency range correspondinglttpis very narrow in comparison t@). Interband
transition rates are divided by the in-band ones. Experimental vi2@gare also shown ith). Noting that, for'6’Lu, the state$+1 (TSD1)
are slightly higher in energy than(TSD2) at | >51/24 andB(T, ;| —1+1)=B(T,;I+1—1) holds at high spins, we plotted those flor
—1+1 at the places with the abscisdasl in order to show clearly their characteristic staggering behavior.
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We performed calculations also fer=—20°. In that case, the obtained RPA wobbling solutions are extremely collec-
however, wobbling excitation exists only at small,; be-  tive in comparison with the usual low-lying collective vibra-
causejx—j(em is small as seen from Fig(H). tions, such as th@ or vy vibrations, for which typicallylc,|

Very recently TSD bands were observed in another even=0.3—0.4, this factor is stil|c -0 =0.6—0.8. This is the
even nucleus!’#Hf [30]. It is not trivial if a similar band main reason why the calculat€{E2) values are a factor
structure is observed in the nucleus with six neutrons mor@-3 off the measured ones. As is well known, giant reso-
since the existence of the TSD states depends on the shelances also carry considerable amount of quadrupole
gap. Multiple TSD bands were observed but connecting strengths, so it seems difficult for the microscopic correction
rays have not been resolved also in this nucleus. We pefactor ¢z, to be unity; it is not impossible, however, be-
formed a calculation adopting,=0.453 andy=16° sug- cause the “sum rule” discussed in Sec. Il is not the sum of
gested in Ref[30] andA,=A,=0.3 MeV. The result is pre- positive-definite terms. In the RPA formalism, the reduction
sented in Fig. 8. The most striking difference from the casdactor c2_,,,, for the B(E2) value, Eq.(24), comes from the
of 1%84f above is thatw,,, decreases steadily as in-  fact that the wobbling motion is composed of the coherent
creases after thémiyg,)? alignment is completed. This is motion of two quasiparticles, and reflects the microscopic
because thévj,s,,)? alignment that causes the small bump in structure of collective RPA solutions. The measurement that
the 58Hf case shifts to very low, due to the larger neutron the B(E2) value suffers almost no reduction may be a chal-
number. lenge to the microscopic RPA theory in the case of the wob-

bling motion. Calculatedd(E2) ratios for "#Hf are slightly
2. 167 smaller than those fol%®Hf in Fig. 10(a).

The second point is the staggering, that is, the difference
betweenl —1+£1. We clarified [15] its unique correspon-
dence to the sign of as mentioned in Sec. lll B; that holds

The wobbling excitation was first observed experimen-
tally in *63_u [19], later it was also observed i¥3Lu [21]
and **’Lu [22]. The characteristic features common to these =~ " - "2 T e ctems. Recentlv this stad.
isotopes arel) wyq, decreases asyy increases contrary to ering was discussed from a d?:‘ferent .point of v>il[éM] but ’
the consequence of calculations adopting constant moments; s to apply only toy<0 cases '
of inertia and (2) B(E2:l—1-1)o/B(E2:1—1-2),, is Y '
large—typically around 0.2.

Here we concentrate on the isotone '8fHf discussed IV. CONCLUSION
above, that is®’Lu in order to see the even-odd difference.
A comparison of Figs. 7 and 9 proves that all the dif'ference%t
are due to the fact that the number of the aligneds,
quasiparticle is less by onél) the (i5,)? alignment at
aroundfiw,=0.2 MeV is absent an(2) the B,C, crossing

The nuclear wobbling motion, which is a firm evidence of
able triaxial deformations, was identified experimentally in
the triaxial superdeformed odd-Lu isotopes. In principle,
wobbling excitation is possible both in>0 andy<0 nu-
L clei. Every information, theoretical and experimental, sug-
ocg:urslat ar.oundi.wrot=(.).55 MeV, which is proper to t_he gestsy>0 for these bands. According to the wobbling fre-
(7ri130)* configuration. Figure @) shows that. our calculation quency formula[8], cf. Eq. (12), its excitation in nuclei
does not reproduce th_e datg, a}lthough in each frequenq)étating principally about the axis requires7,> 7, 7;, al-
range in which the configuration is the samg,, decreases qugh irrotational-like model moments of inertia give
at highwrot_as in the cases of_ the even-even _nuclei prese_ntegrx<jy for y>0. To solve this puzzle, we studied the
above. This result might indicate that there is room for im-p,cjear wobbling motion, in particular, the three moments of
proving the mean field. Thg, in Fig. Ac) is larger than the  nertia associated with it in terms of the cranked shell model
experimentally deduced value by about 20—30 %. This i$,|,s random phase approximation. This makes it possible to
due to the spurious velocity dependence of the Nilsson pOg5|cylate the moments of inertia of the whole system includ-

tential mentioned in Sec. II. ing the effect of aligned quasiparti¢®. The results indicate
that they dependence of the calculated moment of inertia is
D. Interband B(E2) transitions basically irrotational-like(7,= J, for y=0) if aligned qua-

- , siparticlgs) (i3, in the present cagaloes not exist. But
Compared to the excitation energy, the interb®@i82)  nce it is excited, it produces an additional contribution,
values relative to th.e in-band ones have been mea§ured K17, =i op/ wyon and consequently can lead %> 7, even for
only few cases. In Fig. 10, we report calculaB(@?) ratios .~ o This is the very reason why wobbling excitation exists

for | (wobbling on yrast TSP—I+1 (yrast TSD transitions i >0 nuclei. In this sense, the wobbling motion is a col-
in *°%Hf and '*’Lu. The measured ones are also included fonective motion that is sensitive to the single-particle align-
the latter. ments.

The first point is the magnitude of the largér—1-1) The resulting moment of inertia for<©0y=< 30° resembles
ones. Apparently, the calculat@{E2) values are smaller by the y-reversed one, i.e., the irrotational moment of inertia but
factor 2-3. The measured interbaBdE2) values amount with 7, and Jy being interchanged. That for 562y=<60°,
almost to the macroscopic rotor value. In the RPA calculawhere single-particle angular momenta dominate, is rigid-
tions, as summarized in Sec. Il, tB¢E2) value is reduced body-like. That fory<0 is irrotational-like except for odd-
by a factorcﬁ:Wob [see Eq.(24)]: only in the case with the nuclei with —30°< y<<0 where a specific 2QP state deter-
full-strengthc?_,,.,= 1 the rotor value is recovered. Although mines the lowest RPA solution.
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Having studied qualitative features of the three momentsons to the observed excitation energy indicate that there is
of inertia at a low rotational frequency, we calculated wob-room for improving the calculation.
bling bands up to highv,,;. Experimentally they were con- As for the interband transition rates, our calculation ac-
firmed only in oddA Lu isotopes as mentioned above. The counted for only about one-half or less of the measured ones,
most characteristic feature of the data is thgt, decreases even though the wobblinglike solution is extremely collec-
as w,y increases. This obviously excludes constant momentdve compared to the usual vibrational modes. This issue is
of inertia. In our calculation three moments of inertia areindependent of the details of choosing parameters. This con-
automaticallyw,,; dependent even when mean-field param-fronts microscopic theories with a big challenge.
eters are fixed constant. It should be stressed that the wob-
blinglike so_lutlon in our RPA calc_ulat|ons is insensitive to ACKNOWLEDGMENTS
the mean-field parameters, especially to the pairing gaps, as
is shown in Sec. Il B 1. This distinguishes the wobblinglike  We thank G. B. Hagemann for providing us with some
solution from the usual collective vibrations, which are sen-experimental information prior to publication. This work was
sitive to the pairing correlations. Thus, our microscopic RPAsupported in part by the Grant-in-Aid for scientific research
calculation confirms that the observed band is associateflom the Japan Ministry of Education, Science and Culture
with a new type of collective excitation, although compari- (Grant Nos. 13640281 and 14540269
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