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Abstract: The origin of the signature dependence of E&transition matrix elements is studied by analysing 
the microscopic structures of the quasjpa~icle-vibration-coupling wave functions. We show that 

the phase rule of signature dependence stemming from the gamma”vibrationa1 contributions can 
be related to the signature splitting of quasiparticle energies. We also discuss the nucleon-number 

dependence of vibrational effects and show that the results of various models can be understood 

consistently. 

1. Introduction 

Recent experimental progress has made it possible to measure not only energy 

spectra but also electromagnetic transition probabilities between high-spin states in 

the near-yrast region. These quantities give us information about the static and the 

dynamic nuclear deformations at the high-spin states. The effects of the static triaxial 

deformation on electric quadrupole transitions in high-j unique-parity bands in 

odd-A nuclei were studied by Hamamoto and Mottelson ‘1. They showed an axially 

asymmetric nuclear shape gives rise to the signature dependence of the E2-transition 

matrix elements. Later, lkeda *) showed that the gamma vibrations in axially sym- 

metric nuclei also bring about the signature dependence. Both calculations repro- 

duced the staggering in the B(E2, Al = 1) values, which is in the same phase with 

the experimental data for ls7Ho [ref. ‘>I where the odd-quasiproton lies in the mid 

rTThlli2 shell region. On the other hand, Onishi et al. “1 made a calculation in which 

both the static triaxial deformation and the fluctuation around it are taken into 

account, and they obtained the signature dependence of B(E2, Al = 1) whose phase 

is opposite to the experimental data in ref. “), In these works, the particle-rotor 

model was used and it was found numericaliy that the K =2 component of the 

quadrupole moments brings about the signature dependence of the E24ransition 

rates. 

In the preceding paper 5, we proposed a new microscopic model which can take 

into account both the static and the dynamic triaxial deformations and analyzed 

available experimental data for electromagnetic transition rates in rotating odd-A 

’ Present address: Department of Radioisotopes, Japan Atomic Energy Research Institute, Tokai, 
Ibaraki 319-11, Japan. 
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nuclei. The effective intrinsic operator for non-stretched E2 transitions in this 

microscopic model ‘) has three parts: the rotational, the vibrational and the odd- 

quasi~a~icle parts. As was shown in refs. s*6), we can see directly from the operator- 

form of the rotational part, which contains the static quadrupole moments Q0 and 

Q2, how the static triaxial deformation affects the B(E2, AZ = 1) values. On the 

other hand, the signature dependence of the matrix elements associated with the 

vibrational part is not easy to understand, because the properties of these matrix 

elements are determined by the detailed properties of the quasipa~icle-vibration- 

coupling wave functions. 

In the present paper, we study the microscopic mechanism of the signature 

dependence of B(E2, Al = 1) stemming from the vibrational contributions in high-j, 

unique parity bands in odd-A nuclei. We do this by analyzing the structures of the 

quasipa~icle-vibration-coupIing wave functions. The nucleon-number dependence 

of the signature-dependent effects is studied both analytically and numerically. We 

show that the phase rule of the signature dependence is related to the signature 

splitting of quasiparticle energies. 

We give a brief review of our formulation in sect. 2. In sect. 3 the origin of the 

signature dependence of the EZ-transition matrix elements is studied. The nucleon- 

number dependence is discussed in sect. 4. concluding remarks are given in sect. 5. 

2. Structures of the E2 matrix elements 

The quasiparticle-vibration-coupling hamiltonian can be derived from the pairing 

plus doubly stretched quadrupole interaction in rotating frame, and takes the 

following form*: 

The coupling vertices with gamma-vibrational phonons X:,,, are classified by the 

signature quantum number r = +l, and are given by** 

&+‘(yv) = - c K’K”Fi.iY”@‘(/_&V), 
K-0.1.2 

Am?= - 1 Kpfp&-)( P/L) ) (2.2) 
K=l,Z 

l The double prime attached to C denotes that when the component (FLU) is summed its signature 

partner (iit’) should also be summed. 
l * The contributions from the residual pairing interaction in the r = +I sector are omitted in this 

expression for simplicity. 
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where 

FF’= I&), X;j*)]RPA, (2.3) 

with &i’s denoting the doubfy stretched quadrupofe operators 7f_ ~~agoualization 

of &,,,(r) gives the intrinsic wave funct,ions of the following form: 

IXn(~Jmt)>=~ ‘&!%)~:1kJ>+tC ‘-!‘j13’h’)~‘:x;,+,b#J) 
P w 

-kr: ~~~~~~~~~~X~~_~~#~~ - * - (for the r = -i sector), (2.4) 
ii 

where Ic#) is a triaxially deformed reference state in even-even nuclei. 

The effective operator in the principal axis (PA) frame for the E2(dl= 1) 

transitions is written as 

where operators &, and expectation values QK (K = 0,2) are quantized along the 

x-axis and the z-axis, respectively, with 

(2.6) 

The matrix elements for the transitions from the Y = 4-i to the P = -i states are 

given by 

(2.7) 

where we used the relation 7, 

(2.8) 
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when evaluating the last two terms in eq. (2.5). The vibrational contributions are 

given by the last two lines in eq. (2.7) including the RPA transition amplitudes Tg) 

(K = 1,2) associated with the gamma-vibrational phonon. Matrix elements for the 

transitions from the r = -i to the I = +i states can be obtained in the same way. 

We see from these expressions that the anti-hermitian parts that involve the operator 

i$, and the K = 2 contribution &’ give rise to the signature dependence in all the 

three parts in eq. (2.5). 
The phase rule of the signature dependence stemming from the rotational part 

can be obtained by the approximate relation 8*5,6) 

(2.9) 

where Ii and j denote the angular momenta of the initial state and the odd- 

quasiparticle in the high-j, unique parity orbit, respectively, and h~+,~ and AE are 

the rotational frequency and the signature splitting of the quasiparticle energies. 

Using this relation we can rewrite the rotational part of eq. (2.5) as 

(2.10) 

in a good approximation. This expression shows that, if the vibrational and the 

odd-quasiparticle contributions are neglected, B( E2, u + f) is larger than B( E2, f + u) 

when Q0 and Q2 have the same sign. Henceforth we use the notations f and u for 

the favoured state (I -j = even) and the unfavoured state (I -j = odd), respectively. 

Hamamoto obtained 8, an expression similar to eq. (2.10). But her expression applies 

only for the case of j = 4. 

3. Origin of the signature dependence of the EZ-transition matrix elements 
associated with the vibrational part 

As was pointed out in sect. 2, the signature dependence of B(E2, Al = 1) associated 

with the vibrational contributions comes from the difference of the relative phase 

between the main term involving Q. and the terms involving Tie’. This phase 

difference is a consequence of the anti-hermitian property of &‘. While the phase 

rule is determined by the properties of the quasipa~icle-vibration-coupling wave 

functions. 
The vertices Al-’ (~1’) in eq. (2.2) give the coupling strengths between the one- 

quasiparticle state 1 r = + i) and the one-quasiparticle-one-gamma-vibrational state 

Xlc_,jr = -i), while A:-‘( V,u) give those between Ir = -i) and Xi(_,lr = +i). In other 

words, when r = ti is the favoured signature la; (Y E f) and Xi,-&?; p E u} are 

coupled with the strengths A\-‘(pG) while la; e f u} and X?rC_,Ip; p E f) are coupled 

with the strengths A\-‘(Fp). When r= -i is the favoured signature, the roles of 
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A~~‘(@) and A$-‘( VP) are exchanged. Using the symmetry property ‘) 

(3$)&C) = -(-l)Yj(&.L) , (3.1) 

we can rewrite A;‘(@) and A\-‘( i;cc) as 

A\?(yf, u) = -(~‘I-‘I-i~-‘(fld:-‘IU>+ K$-)T:-)(f@:-)Iu)), 

&‘(yu f) = -(!c Y ) :P’~‘,-‘(fjtj;-‘/u> - K:-‘F:-‘( f/&‘hl)) _ (3.2) 

Using these expressions the wave functions (2.4) for yrast states are reduced, in the 

first-order perturbation theory, to 

lu)) = all&+ ~,&Cf-il#) , 
If)) = 4#4+ Q4X:~-,l4) > (3.3) 

with 

s =T Al-‘(rf, u) 

” AE - Aq,.., ’ 

6 =T A:-bu, f) 
f 

-AE - hw,<_, ’ 
(3.4) 

where AE is defined by AE = E, - Ef. 

The matrix element (2.7) and its signature partner can be written as 

+J~((f~~:-‘~u>*(f~~~-‘~u))+J~((s,+6,)T:--’rt(6,-S,)TI-‘). (3.5) 

With the heIp of eqs. (3.4), (3.2) and (2.3), the linear combinations of perturbation 

amplitudes in eq. (3.5) can be written as 

s,+ Ff== ,‘- *:-'7--'(fj&'Iu) , 
Y( ) 

8” - Sf’. ~x;-)TT(‘-‘cf~&‘iu), 
vt f 

when AE Q hw,(_) holds. We used the relations between 

quantities and non-stretched ones: 

(3.6) 

the doubly stretched 

and 

(3.8) 

(Ij-~=!q? ^( ) 
w. QI- 3 

(j$-‘=q$ “f ) 
w. Q2- > (3.7) 

2 

C-b 
KI 2 



438 M. Matsuzaki / Signature-dependent effects 

in the derivations of eq. (3.6). Expressions (3.5) and (3.6) show that the gamma- 

vibrational contributions bring about the signature dependence such that B( E2, f + 

u) is larger than B(E2, u+ f) when the sign of (f]_?z]u> is opposite to that of (f]&-‘lu) 

and Q0 is positive. Note that the odd-quasipa~icle contribution also gives rise to 

the same signature dependence. But its magnitude is much smaller than that of the 

vibrational contributions discussed above. 

The quadrupole operators with r = -1 in a single-j shell-model are represented 
by replacing the coordinate x by the angular momentum J [ref. ‘)I as follows: 

with 

(3.91 

J 5 90 
co= -- 

161~ j(j+ 1) ’ 

where go is a constant with dimension [L’]. We now assume that j, in eq. (3.9) can 

be replaced by an aligned angular momentum i, when we deal with the lowest-energy 

quasiparticle states. Making use of the relation (2.9) we then obtain 

&-)(4p) = _ (_.t)Ji-j !!&!I_ &)(4p) . (3.11) 
IXJt 

The relation (3.11) implies that the matrix elements {f](i$-‘]u> and (fi@-‘fu) have 

the same sign. Numerical values of these matrix elements for the N = 90 isotones 

are shown in fig. 1. These matrix elements are presented as ratios to (fljz]u> for later 

Iv=90 

-4 I ’ ’ ’ ’ I ’ ’ 
Cs Lo Pr Pm Eu Tb t-lo Tm Lo 

Fig. 1. Ratios of the single-quasiparticle matrix elements of quadrupole operators and the angular 

momentum between the lowest-energy signature-partner states in the rrh, ,,* shell at hw,,, = 0.2 MeV are 
plotted in (fm’) as a function of the proton number for the N = 90 isotones. The solid and the broken 

lines represent the ratios {f~~~~~~~}/{f~;~~u) and (f~~~~‘~~)/(f!~~u~, respectively. The favoured signature 
is P= ti in this case. Parameters used in these numerical calculations are pceo0=0.20, y(po’)=O and 

A,=A,= 1.0 MeV. Chemical potentials are determined such that the particle numbers are correctly 
reproduced at hw,,, = 0. 
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convenience. Although there are some deviations in absolute values, the approximate 

phase relation (3.11) is fulfilled except for the case of “‘Pm where its value is close 

to zero. 

Since we obtained a relation between (fl &‘Iu) and (fl &‘h~), the phase relation 

for the signature dependence of B(E2, Al = 1) can be related to the signature splitting 

of the quasiparticle energies. From the commutators between h’ and (j,, i&) in the 

prolate limit, we can derive the following identities between the quasiparticle matrix 

elements 

-AE(flj,lu) = hw,,,(fli_&lu) , 

-AE(fli&lu)= hw,,,(flj,lu)+~cy,(fl6’l~‘lu). (3.12) 

Using these identities we obtain the relation 

(3.13) 

We, therefore, conclude that the gamma-vibrational contributions make B(E2, f+ u) 

larger than B( E2, u + f) when (AE/ Aw,,J * is smaller than unity and Q,, is positive. 

Note that when we cannot neglect AE/&J,~_,, the cross terms, which are usually 

small, between the K = 1 and the K = 2 contributions remain. Since the transition 

amplitudes T:-’ and T:-’ associated with the gamma-vibrational phonon always 

have the same sign numerically, the signature dependence originated from these 

cross terms is also determined by eq. (3.13). 

4. Nucleon-number dependence of the signature-dependent effects 

The origin of the signature-dependent effects of the gamma vibration on the 

E2-transition matrix elements has been clarified in the preceding section. We discuss 

in this section the nucleon-number dependence of this effect and present the result 

of numerical calculations. 

The signature splitting AE appearing in eq. (3.13) depends on the nucleon number 

and the rotational frequency in a rather complicated way, it depends also on the 

equilibrium shapes (/3, y) and the pairing gaps (A,, A,). Of course properties of 

the gamma-vibrational modes also depend on the nucleon-number and the rotational 

frequency. In order to see the shell-filling dependence of the signature-dependent 

effects avoiding the complications associated with the changes in (p, y) and (A,, A,), 

we have performed numerical calculations for the N=90 isotones with constant 

deformation parameters pCpot) = 0.20, yCpOt) = 0 and A, = A, = 1.0 MeV. The quad- 

rupole-force strengths are fixed such that we obtain hw,(,) = 0.8 MeV, hmp = 1.0 MeV 

and ri~~o(*~ = 0 at &J,,~ = 0 for each nucleus. The pairing-force strengths and the 

chemical potentials are fixed such that the above-mentioned pairing gaps and the 

correct nucleon numbers are reproduced at h~,,~ = 0 for each nucleus. 
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The signature splitting AE is smaller than the rotational frequency AU,,, when 

the chemical potential lies higher than the mid rh,,,2 shell region to which experi- 

mental data for B(E2, Al = 1) are avaifable. On the other hand, when the chemical 

potential lies low in the rrh,,12 shell region, the ratio AE/hw,,, can become larger 

than unity*. This is because the decoupling matrix elements (fl.?,lf) and (uj.?Xlu) 

which already exist at hw,,r = 0 greatly contribute to AE in such cases. Numerical 

examples can be seen in figs. 19 and 20 of ref. ‘). Numerical results for the ratio 

be/ fiw,,z for the N = 90 isotones are shown in fig. 2. The ratio decreases smoothly 

as the rrhl,,,2 shell is filled and crosses unity around the “‘Pm nucleus. 

N=90 
fir&et= 0.2 McV 

Cs La Pr Pm Eu Tb Ho Tm Lu 

Fig. 2. Ratios of the signature splitting of the quasiparticle energies AE = E, - E, and the rotational 

frequency hw,,,, = 0.2 MeV. Parameters used are the same as in fig. 1. 

The ratios B(E2, f-, u)/B(E2, u+f) obtained by using the exactly diagonalized 

wave functions, in which the gamma vibration with r = +l is also taken into account, 

are presented in fig. 3. As is expected from eq. (3.13) and fig. 2, the sign of the 

signature-dependent effect is inverted in the vicinity of the 14’Pr nucleus. Here we 

note that small contributions from the odd-quasiparticle part (in the second line in 

eq. (3.5)) and from small but finite expectation values of Qz (in the first line in eq. 

(3.5)) due to the breaking of the self-consistency between the shape of the potential 

(given by p(pat) and yCpot’ ) and that of the density are contained in this result; 

typically the former is a few percent of each B(E2) value and Q2/Q0 is 0.001 in the 

latter. 

The result shown in fig. 3 is consistent with that of all the previous works: ii) 

When the Fermi surface lies at the mid rrh ,,/? shell region, the signature splitting 

is smaller than the magnitude of the rotational frequency. In this case, the gamma- 

vibrational contributions enhance B(E2, f+ u). This is the case discussed by Ikeda *) 

and in our previous works ‘*‘). (ii) When the Fermi surface lies low in the rh1r,2 

shell, the signature splitting is larger than the rotational frequency. In this case, the 

l The statement made in ref. ‘) that the ratio dE/ ft~,,~ is less than unity applies only for the 2 5 63 

region considered in this reference. 
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I I 11~1 1 I 

Cs La Pr Pm Eu Tb Ho Tm Lu 

Fig. 3. Ratios of B(E2, ill = 1). The doubly stretched quadrupole-force strengths are determined such 

that the vibrational frequencies hw,,,,, hw, and fiwNc,,.tl become 0.8 McV. 1.0 MeV and 0, respectively, 

at hw,<,, = 0 in I-major shell calculation. The pairing-force strengths are determined so as to reproduce 

JP = 3, = t .D MeV. Other parameters are the same as fig. 1. in the cases of “‘Ho and “‘Tm, the signature 

dependence is weaker than that in figs. 9 and $0 of ref. ‘). This is because a smaller energy gap is used 

in the present calculation in order to approximateiy reproduce the average value of the experimentaf 

odd-even mass differences in the ‘45Cs-‘“‘Lu region. 

gamma-vibrational contributions enhance B(E2, u -+ f). This is the case discussed 

by Onishi et ai. “)_ 

The phase relation fXf3) can be understood also from another point of view: 

The pairing factor appearing in the a’a part of the operators 3: and iiV are (uz? + UC), 

while the corresponding part of the quadrupole operators &‘s contain the factor 

(uU - vi?). The relative sign between these factors changes as the occupation number 

in the Th11,2 shell changes. 

5. Concluding remarks 

We have studied the signature-dependent. effects of the gamma-vibrational contri- 

butions on R( E2,31= 1) in rotating odd-A nuclei from the microscopic point of 

view. The signature dependence is brought about directly by the K = 2 components 

of the quadrupole operators both in the rotational part and the vibrational part in 

the EL-transition matrix elements. We have estabiished the phase rule for the 

signature-dependent effects associated with the gamma vibration in relation to the 

signature splitting of the quasiparticle energies. The magnitude of the signature 

splitting changes depending on the occupation probabilities in the xh, ,I? shell. Thus 

the signature-dependent effects are expected to exhibit a characteristic nucleon- 

number dependence: Namely, B(E2, f+ u) is enhanced in the mid rrhllf3 shelf 

region while B(E2, u+ f) is enhanced in the beginning of the rh,,,> shell region, 

if the effects of the static triaxiality are small, Needless to say, the phase rule found 

in this paper applies also to any unique-parity band other than the Th,,,, orbital. 

Experimental data for the EZ-transition rates in nuclei whose Fermi surfaces he 

low in the rrh,ri2 shell have not been available yet. These data are desired to test 

our theoretical prediction experimentally. 
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