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We calculate the specific heat of the inner crust of neutron stars, which determines
the cooling time, using a local-density approximation of an improved relativistic Hartree-
Bogoliubov model. The non-uniformity of the system enhances the specific heat, especially
at low temperatures. We examine a schematic interpolation between the results of Broglia et
al., adopting the Gogny force, and ours, based on the Lagrangian of the relativistic mean-field
model.

§1. Introduction

The inner crust of a neutron star, with densities ranging from the neutron drip
density to values of the order of the saturation density, is a non-uniform system
consisting of a Coulomb lattice of neutron-rich nuclei and a sea of free neutrons. In
this layer, free neutrons exist in the form of a 1S0 superfluid. This layer conveys a
drop in temperature due to neutrino emission in the core to the surface. The rate of
the conveyance depends on the specific heat and the thickness of the inner crust. The
dependence of the cooling (random walk) time of young neutron stars, trw, on these
quantities is studied in Ref. 1). There, it is found that trw � L2/D, where L is the
thickness of the inner crust andD is the diffusivity. The latter is given by dividing the
thermal conductivity by the specific heat.2) This relation implies a linear dependence
of the cooling time on the specific heat. Later, the investigation reported in Ref. 3)
confirmed this relation approximately with a numerical simulation, although the
effect of the superfluidity on the specific heat was not included there.

Reference 4) first studied the effect of superfluidity on the specific heat of a
non-uniform inner crust using the Gogny force, which has the characteristic that
superfluidity survives up to a rather high density. Because superfluidity reduces the
specific heat, it leads to a decrease of trw. More specifically, it causes a shortening
of the length of the early plateau in the cooling curve.5) Here, we study such a
non-uniform system, adopting the RMF interaction. This interaction has the prop-
erty that the superfluid gap closes at a lower density. It is a one-boson exchange
interaction derived from the Lagrangian density of the relativistic mean field (RMF)
model with a momentum cutoff. We call the RMF model with a pairing field the
“relativistic Hartree-Bogoliubov model” and that with a momentum cutoff in the
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pairing channel the “improved relativistic Hartree-Bogoliubov model”. As a first
step of this application, we adopt a local-density approximation and ignore possible
non-spherical shapes of neutron-rich nuclei.

§2. The model

We begin with the simplest version of the RMF model, the σ-ω model. Its
Lagrangian density reads

L =ψ̄(iγµ∂
µ −M)ψ

+
1
2
(∂µσ)(∂µσ) − 1

2
m2

σσ
2 − 1

4
ΩµνΩ

µν +
1
2
m2

ωωµω
µ

+gσψ̄σψ − gωψ̄γµω
µψ,

Ωµν= ∂µων − ∂νωµ. (1)

Here ψ, σ and ω denote the neutron, the sigma boson and the omega meson, respec-
tively. Their masses are M = 939 MeV, mσ = 550 MeV and mω = 783 MeV. The
coupling constants are g2

σ = 91.64 and g2
ω = 136.2, as given in Ref. 6). Solving the

equations of motion derived from L with the mean field approximation for σ and ω,
we obtain the single-particle spectrum E(k) (whose explicit form is given later) of
ordinary (normal fluid) pure neutron matter. The RMF pairing interaction is also
derived from this L as

v̄(p,k) = 〈ps′, p̃s′|V |ks, k̃s〉 − 〈ps′, p̃s′|V |k̃s,ks〉, (2)

with the tildes denoting time reversal. Here, V represents the σ and ω exchange
between neutrons (the second-order diagram of the coupling terms). Integration
over the angle between p and k to project out the S wave component gives v̄(p, k).

The first attempt to describe superfluidity in uniform infinite nuclear matter
adopting the RMF interaction is given in Ref. 7). However, the result obtained
there is not very realistic, in that the resulting pairing gap is too large. This can
be attributed to unphysical behavior of the RMF interaction at high momenta; i.e.,
the repulsion is too strong. The 1S0 pairing gap ∆ in infinite matter is obtained by
solving the gap equation,

∆(kF) = − 1
8π2

∫ ∞

0
v̄(kF, k)

∆(k)√
(E(k) −E(kF))2 +∆2(k)

k2dk . (3)

This equation indicates that primarily attraction [ v̄(kF, k) < 0 ] brings about the
relation ∆(kF) > 0. However, repulsion [ v̄(kF, k) > 0 ] can also do this if ∆(k) < 0.
Qualitatively, this actually occurs at high k, irrespective of whether the RMF inter-
action constructed for the description of the finite density system or the bare inter-
action that reproduces the nucleon-nucleon scattering in the free space is adopted.
Quantitatively, this contribution is too large in the calculation of Ref. 7) mentioned
above. Then, the simplest way to reduce pairing gap is to cut off the momentum
integration in Eq. (3) at an appropriate value k = Λ. Tanigawa and one of the
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Fig. 1. Pairing gap at the Fermi surface of neutron matter as a function of the Fermi momentum

[ ∝ (density)1/3 ]. This graph was calculated using the cutoff parameter Λ = 3.60 fm−1.

present authors proposed a method to determine a density-independent cutoff pa-
rameter Λ quantitatively.8) In that work, the optimal value of Λ was determined for
symmetric nuclear matter, because the original parameters of the RMF model were
adjusted for it. In the present work, the same value of Λ is used for neutron matter.
The result is plotted in Fig. 1. In this calculation, not only is the maximum gap
reduced, but also the gap is made to close at a lower kF by introducing Λ. Although
a more sophisticated way to modulate the high-momentum part smoothly was also
developed later in Ref. 9), the simple method presented in Ref. 8) is sufficient for
the present purpose, since only the pairing gap at the Fermi surface at each density
is necessary in a local-density approximation.

In order to describe a non-uniform system composed of a lattice of neutron-rich
nuclei and a sea of free neutrons, we adopt the Wigner-Seitz (WS) approximation, in
which each spherical cell contains at its center one nucleus permeated by free neutrons
that have dripped off from it. We parametrize the neutron density obtained from a
density-dependent Hartree-Fock calculation in Ref. 10) in terms of the Woods-Saxon
form

ρn(r) =
ρ0,n

1 + exp[(r −Rn)/an]
+ ρext,n , (4)

as done in Ref. 4). We carried out calculations at five representative densities in
accordance with that work. The parameters used in Eq. (4) are listed in Table I.
The radii of the WS cells are also included. Here we introduce a local-density ap-
proximation; that is, we assume a uniform Fermi gas of neutrons at each spatial
point. Then the local Fermi momentum is calculated from the local density given
by Eq. (4) as

kF(r) = (3π2ρn(r))1/3 . (5)
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Table I. Parameters used in Eq. (4) and the radii of the Wigner-Seitz cells.

ρ/ρ0 ρ0,n ρext,n Rn an Rws

(fm−3) (fm−3) (fm) (fm) (fm)

A 0.46 0.114 0.0737 5.0 1.2 15.0

B 0.28 0.101 0.0436 7.0 1.1 20.9

C 0.12 0.098 0.0184 7.4 0.8 29.4

D 0.034 0.104 0.0047 6.8 0.9 35.5

E 0.005 0.108 0.0005 5.9 0.9 45.7
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Fig. 2. Profile of the local Fermi momentum (left) and of the local pairing gap (right) in a Wigner-

Seitz cell.

The profile of this momentum in each WS cell is plotted in the left panel of Fig. 2.
This determines the profile of the pairing gap, because the gap in uniform neutron
matter is calculated as a function of kF, as shown in Fig. 1. The resulting ∆(r, kF(r))
is displayed in the right panel of Fig. 2, whereas ∆(r, p) at every r and p is needed
for the local quasi-particle energy,

E(r, p) = ((E(p) − E(kF(r)))2 +∆2(r, p))1/2 . (6)

Here, E(p) = (p2+M∗2)1/2+gω〈ω0〉 is the single-particle energy, andM∗ = M−gσ〈σ〉
is the density-dependent effective neutron mass. In these expressions, 〈·〉 represents
the expectation value of the indicated boson field. Note that M∗ is calculated in
pure neutron matter, not in β-equilibrated neutron star matter, while the electron
contribution to the specific heat is taken into account below.

Now we are ready to calculate the specific heat of the system. The specific heat
is calculated from the entropy,

S = −2
∫
d3r

∫
d3p

(2π)3
{f(r, p) ln f(r, p) + [1 − f(r, p)] ln[1 − f(r, p)]} , (7)
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as

CV n = T
∂S

∂T

∣∣∣∣
V

. (8)

The phase-space distribution function in Eq. (7) is

f(r, p) =
1

1 + exp[E(r, p)/T ]
, (9)

where the quasi-particle energy is given by Eq. (6). The final expression is

CV n =
1

πT 2Vws

∫
Vws

dr r2
∫
dp p2 E2(r, p)

cosh2[E(r, p)/2T ]
. (10)

The spatial integration is performed over each WS cell, and the momentum inte-
gration is done up to Λ = 3.60 fm−1, determined in Ref. 8) to give physical pairing
gaps. Note that the temperature dependence of the quasi-particle energy is ignored,
because only low temperatures are of interest in the present study. In addition to
neutrons, a degenerate electron gas, which we assume to be uniform, gives a compa-
rable contribution,11)

CV e =
1
3
k2

F(m2 + k2
F)1/2T , (11)

while that from protons is negligible.4) This expression indicates that, because of
the equilibrium of the chemical potential, the electron contribution increases as the
density increases. Thus, the total specific heat is given by

CV tot = CV n + CV e . (12)

§3. Results and discussion

The effect of non-uniformity can be seen by comparing the upper-left (showing
CV n for uniform matter) and the upper-right (for non-uniform) panels of Fig. 3. One
characteristic is that the density dependence is weak in the non-uniform system. This
is due to a density-dependent increase of CV n. The reason why non-uniformity causes
CV n to increase can be inferred from an expression obtained using a weak-coupling
approximation for the uniform system,12)

CV n

T
∝

(
∆0

T

)5/2

exp
(
−∆0

T

)
, (13)

with ∆0 being the uniform gap. This is a decreasing function of ∆0/T at low
temperatures, specifically, for∆0/T > 5/2, and consequently leads to CV n(normal) >
CV n(super). Since non-uniformity produces a region where the gap is small, it results
in an increase of CV n. This effect is in particular conspicuous at lower temperatures,
because a small variation in ∆0 leads to a large variation in ∆0/T . Contrastingly,
the difference in ∆0 is not important at high temperatures.
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Fig. 3. Temperature dependence of the partial specific heat of uniform neutrons (upper-left), non-

uniform neutrons (upper-right) and electrons (lower). Note that, because the critical temper-

ature is estimated with a weak-coupling formula as Tc = ∆0/1.76,12) the temperature region

considered here is well below it (see Fig. 2).

Because the contribution from electrons is of the same order (the lower panel of
Fig. 3) as that from the non-uniform neutrons, the enhancement of CV tot,

CV tot(nu)
CV tot(u)

=
CV n(nu) + CV e

CV n(u) + CV e
, (14)

where “nu” and “u” indicate non-uniform and uniform, is in the neighborhood of
3 to 4, as shown in Fig. 4. Comparing this to Fig. 3 in Ref. 4) elucidates the
difference at low temperatures. This difference leads to that in the cooling time. The
considerations above indicate that the difference originates from the region where
the pairing gap is small — the interior region of the nucleus at the center of the WS
cell. Actually, although the Gogny force adopted in Ref. 4) is known to yield pairing



Relativistic Hartree-Bogoliubov Calculation 625

0 0.1 0.2 0.3
0

1

2

3

4

T(MeV)

C
v 

to
t (

nu
) 

/ C
v 

to
t (

u)

Fig. 4. Temperature dependence of the ratio of the total specific heats. The legend of the curves

is the same as in Fig. 3.

properties similar to those given by bare interactions at low densities,13) there is
the big difference at high densities that the superfluid phase survives far above the
saturation density (see Fig. 5.4 of Ref. 14) and Fig. 3 of Ref. 15), for example).
In contrast, our cutoff parameter in the RMF description was determined so as to
reproduce the pairing properties given by one of the bare interactions, the Bonn-
B potential, and accordingly, the pairing gap closes near the saturation density.
(See Fig. 2(a) of Ref. 8) for the symmetric matter case.) This makes the gap in
the interior region vanish. In Ref. 16), the non-relativistic version of the Bonn-A
potential is adopted, and the results for ρ/ρ0 = 0.058 and 0.176, where a spherical
shape is expected for neutron-rich nuclei, are presented. Our results for the cases B,
C and D in Table I are very similar to theirs with respect to the heights and the T
dependences. Here, one comment is in order concerning the double-counting problem
for short-range correlations, which arises when effective interactions are adopted in
the gap equation. In principle, this problem does exist, as pointed out in Ref. 16),
but the analysis given in Ref. 9) indicates that it does not significantly affect the
results.

Since the essential difference between the results given in Ref. 4) and ours re-
gards the gap in the interior region, as mentioned above, we examine a schematic
interpolation between the two models; we vary the gap in this region by hand, as
shown in the upper-left panel of Fig. 5 for the density of case B in Table I. The result-
ing specific heats are presented in the upper-right panel. Clearly, CV n approaches
that given in Ref. 4) (see Fig. 2 therein) as the gap in the interior region is increased
and to that of uniform matter by further increase. Finally, the ratio of the total
specific heats is shown in the lower panel. This confirms that the vanishing gap in
the interior region is the cause of the enhancement of CV tot at low temperatures.
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Fig. 5. Schematic variation of the gap profile (upper-left), the resulting temperature dependence of

the neutron specific heat (upper-right), and that of the ratio of the total specific heats (lower).

Here, we consider the density of case B in Table I.

§4. Concluding remarks

We have calculated the specific heat of the inner crust of neutron stars. This
work is in a sense a relativistic counterpart of Ref. 4). But more important than the
difference between relativistic and non-relativistic is the difference in the pairing gap
at high densities. In addition to the enhancement of the specific heat in comparison to
the uniform case, treated in Ref. 4), our calculation yields a conspicuous enhancement
at low temperatures, due to the suppression of the gap at high densities. Because
the cooling time of young neutron stars depends linearly on the specific heat of the
inner crust, the obtained enhancement leads to a direct effect on the cooling time.
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Beyond this first-step calculation, two kinds of refinements are in order; one is
to take into account non-spherical shapes of lattice nuclei in the high-density part
of the inner crust, and the other is the so-called proximity effect beyond the local-
density approximation, that is, the spread of the pair wave function measured by
the coherence length. (See Fig. 2(b) of Ref. 8) for the symmetric matter case. Co-
herence lengths for neutron matter are somewhat smaller.) The former is examined
in Refs. 16)–18), where it is shown to strengthen non-uniformity, whereas the latter
has been shown to weaken it.19)
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