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SPATIAL STRUCTURE OF QUARK COOPER PAIRS
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Munakata, Fukuoka 811-4192, Japan
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The spatial structure of Cooper pairs with quantum number color 3*, I = J =
L = $ = 0 in ud 2 flavor quark matter is studied by solving the gap equation in full
momentum range without the weak coupling approximation. Although the gap at
the Fermi surface and the coherence length depend on density weakly, the shape
of the pair wave function varies strongly with density. This result indicates that
quark Cooper pairs become more bosonic at higher densities.

Color superconducting phases of strongly interacting matter at high den-
sity and low temperature are attracting much attention recently. They were
studied first as an example of pair condensation in relativistic many-body sys-
tems by Bailin and Love in early 80’s! Iwasaki and Iwado’s work on a 1 flavor
systen? was the first study of the realistic SU(3) color system. Since the works
of Rapp et al® and Alford et al.} color superconductivity has been studied
extensively. The 1Sy (J = L = S = 0) state in ud 2 flavor case and the color-
flavor-locked state in uds 3 flavor case, respectively, have been understood to
be the most favored channels.

The purpose of this talk is to visualize the spatial structure, in particular
its density dependence, of quark Cooper pairs, which has not been discussed,
to the author’s knowledge. To this end, calculations are performed for Cooper
pairs of the simplest form at zero temperature under an instantaneous approx-
imation while full k-dependence is retained. That is, we allow strong coupling
in the sense that momenta far from the Fermi surface also contribute. The
formulation is based on RefsZ®

We start from deriving the equation for A(k) representing the gap for
color 3*, isosinglet 'S, pairs composed of two quarks which are time-reversal
conjugate to each other with respect to space and spin,
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where s, f and i denote spin, flavor and color, respectively. The gap equation
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is obtained by diagonalizing the 12 x 12 Hamiltonian matrix,
Amk —u A
—A* —(Ep —p) .,
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and expressing the pair condensate in terms of the resulting Bogoliubov coef-
ficients, as

A(p) = |wwm 08 (p, k) M\% Kdk,
E'(k) = \/(Ex — Ex )2 + 382(k). ®3)

As for the residual interaction, we adopt the one gluon exchange interaction
with a Debye screening mass in the electric part, m% = Wthm“

o(p, k) = IHQm -
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The running coupling constant is taken from Ref® as in Refs.2®
4m 1
as(q®) = — 7
9 9% ta?
in (%)
q=p -k, ¢}, = max{p? k’}, (5)

with parameters ¢2 = H.m?muog Aqcp = 0.4 GeV. As for the quark mass,
M, = 10 MeV is adopted according to Ref?

First we discuss the gap at the Fermi surface and the coherence length ¢ as
functions of the Fermi momentum kg, which is related to the baryon density
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in the strong coupling case, in terms of the pair wave function,
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In Fig.1(a), A(kr) is graphed for kr = 1.5 — 3.25 fm~!, which corresponds to
p/po =~ 1.5 — 15 if the normal density of symmetric (N = Z) nuclear matter
is defined as po = 2(kr)3/372, (kr)o = 1.30 fm~'® This shows very weak
kp-dependence; the superconducting phase survives up to practically infinite
density. The coherence length is shown in Fig.1(b). This can be compared
with the Pippard length in the weak coupling theory, £ = kp/mA(kp)p =~
1/ A(kr); the magnitudes of £ are approximated fairly well by £, whereas the

1/3
kp-dependence is different. The average interparticle distance d = Aamv /kr,

derived from p, = 3p = 1/d3, is also shown in the figure. The magnitudes of £
and d are very similar to each other as in the nucleon-nucleon case? whereas
€ is 3 — 4 orders of magnitude larger than d in metals. This indicates strong
coupling feature in the sense that quark Cooper pairs are compact and therefore
bosonic. That is, fermion exchange is less when their mutual overlap is small.
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Figure 1: (a) Pairing gap at the Fermi surface, and (b) coherence length and average in-
terquark distance, as functions of the Fermi momentum kg.

Next, we turn to k-dependence at each kp. The compactness of Cooper
pairs mentioned above indicates spreading of ¢(k) in k space. Figure 2(a) shows
that the width of ¢(k), which corresponds to 1/¢, is almost kp-independent as
mentioned above since the quasiparticle energy E'(k) in the denominator in
Eq.(7) grows as k goes away from kp.

Finally, we Fourier-transform ¢(k) to
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in order to look into the spatial structure of quark Cooper pairs more closely.
Although the coherence length £, corresponding to the root mean square dis-
tance with respect to this wave function, is almost kp-independent, the shape
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Figure 2: Pair wave function as functions of (a) the momentum k and (b) the distance r
calculated at kg = 1.5 - 3.0 fm~1.

of ¢(r) is strongly kp-dependent; large-k components in high-density cases
bring nodes in r-space. In other words, ¢(r) is diffuse at low densities. This
indicates that quark Cooper pairs become more bosonic at higher densities.

To summarize, we have studied numerically the spatial structure of quark
Cooper pairs in the color 3*, isosinglet 1Sy channel by solving the gap equation
in full momentum range. The resulting coherence length is almost density
independent as well as the gap at the Fermi surface and is of magnitudes
similar to the average interquark distance. The dependence of the pair wave
function (condensate) on the relative momentum and distance between two
quarks that form a Cooper pair has been presented. This indicates that quark
Cooper pairs become more bosonic at higher densities although the coherence
length is almost density independent.
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