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Abstract

Spatial structure of Cooper pairs with quantum numbers color 3*, I =
J =L =5 =0 in ud 2 flavor quark matter is studied by solving the gap
equation and calculating the coherence length in full momentum range without
the weak coupling approximation. Although the gap at the Fermi surface and the
coherence length depend on density weakly, the shape of the r-space pair wave
function varies strongly with density. This result indicates that quark Cooper
pairs become more bosonic at higher densities.

1. Introduction

Color superconducting phases of strongly interacting matter at high den-
sity and low temperature [1, 2, 3] are attracting much attention recently. They
were studied first as an example of pair condensation in relativistic many-body
systems by Bailin and Love in the early 80’s [4] (see also Ref.[5]). They also men-
tioned the nucleon-nucleon pairing as another example; its detailed study was
begun in the early 90’s [6] and is developing recently [7, 8, 9, 10]. A study of
the quark-quark pairing in an SU(2) color model was done at almost the same
time [11] (see also Refs.[12, 13]). Iwasaki and Iwado’s work on a 1 flavor system
[14] was the first study of the realistic SU(3) color system (see also Ref.[15]).
Since the works of Rapp et al. [16] and Alford et al. [17] on ud 2 flavor system,
color superconductivity has been studied extensively. The 'Sy (J =L = S =0)
state in the 2 flavor case [18] and the color-flavor-locked state in uds 3 flavor case
[19, 20, 21, 22, 23], respectively, have been understood to be the most favored
channels. The magnetic interaction has been shown to be responsible for these
pair condensations [24, 25, 26, 27, 28, 29]. Their astrophysical consequences were
also studied [30, 31].

The purpose of this talk is to visualize the spatial structure, in particular
its density dependence, of quark Cooper pairs, which has not been discussed,
to the author’s knowledge. This is done for Cooper pairs of the simplest form;
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color 3*, isosinglet 1Sy pairs in the 2 flavor system. To this end, calculations are
performed for zero temperature under an instantaneous approximation while full
k-dependence is retained. That is, we allow strong coupling in the sense that
momenta far from the Fermi surface also contribute.

2. Formulation

We start from deriving the gap equation for A(k) representing the gap
for color 3*, isosinglet 1S, pairs composed of two quarks which are time-reversal
conjugate to each other with respect to space and spin,
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where s, f and ¢ denote spin, flavor and color, respectively. Note that time-
reversal is represented by T times complex conjugate, and T = —iC~®. We work
in a Hamiltonian formalism since it is more convenient than the Gor’kov formalism
[32] in the present study in which only the pair condensate is considered. The
latter might be more suitable when the coupling between the pair condensate
and the chiral condensate [17] is considered. Such a formalism has already been
developed for the nuclear system [7, 9] although the N-N condensate is negligibly
small [9] due to a large nucleon mass. The resulting 12 x 12 Hamiltonian matrix,

(%8 )
-A* —(By—p))’
Ep= /K2 + M2, p=Ey,, (2)

is easily block-diagonalized to two 6 x 6 matrices by inspection. Then they arc
fully diagonalized along the lines of the 1 flavor case studied in Ref.[14]. By
expressing the pair condensate in terms of the Bogoliubov coefficients, we obtain

A0) =~z | 00 R) gr Kk,
E'(k) = /(B — Ei)? +302(k), (3)

here the factor 3 reflects the fact that quarks have three colors.
As for the residual interaction, we adopt the one gluon exchange interaction
with the leading order screening. Although the gluon propagator therein contains

a gauge-dependent term in general, it vanishes due to the equation of motion of
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the external quark. Then we proceed to a static (instantaneous) approximation
[14, 15, 18]. At this step, the dynamic magnetic screening drops. By performing
a spin average and an angle integration to project out the S-wave component, we
obtain

p+
p

2, .2, 12 2 (p+k)>+mp
+2 (6B, B - 6M; - 5 — k) In| i

g )

SW = Mthm . (4)

The running coupling constant is taken from Ref.[33] as in Refs.[15, 18],
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with parameters ¢Z = 1.5A3cp, Aqop = 0.4 GeV.

C

3. Density Dependence

In the following, we present numerical results in three steps. These can be
regarded as an upper limit of the pair correlation since the magnetic interaction is
also screened if the retardation is allowed. As for the quark mass, M; = 10 MeV
is adopted according to Ref.[14]. First we discuss the gap at the Fermi surface
A(kp) and the coherence length £ as functions of the Fermi momentum kg, which
is related to the baryon density as p = 2k2/37? in the present 2 flavor case. The
coherence length is defined as [34],

. Q%o _mm_%%vﬂ\m

Ie7 9Pk ©
in the strong coupling case, in terms of the pair wave function,
1 A(k)
k)y=—
RS (7)

which is identical to the pair condensate up to phase factors. In Fig.1.(a), A(kr)
is graphed for kg = 1.5 — 3.25 fm~!, which corresponds to p/py ~ 1.5 — 15 if
the normal density of symmetric (N = Z) nuclear matter is defined as py =
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Fig. 1. (a) Pairing gap at the Fermi surface, and (b) coherence length and average
interquark distance, as functions of the Fermi momentum kp.

2(kp)3/3n2, (kp)o = 1.30 fm~! [35]. This shows very weak kp-dependence; the
superconducting phase survives up to practically infinite density; for example,
A(kp = 60fm™) ~ 50 MeV. We confirmed that the gap is predominantly brought
about by the magnetic interaction; about 50% of the total gap remains when
the electric interaction is cut artificially while only 5 — 10% remains when the
magnetic part is cut. This magnetic dominance can also be deduced from the
strong kp-dependence of #(kr, k) (Fig.2.(c) below) except at k =~ ky where the
magnetic interaction gives very strong attraction irrespective of kr, in contrast to
the weak kp-dependence of A(kp). The coherence length is shown in Fig.1.(b).
This can be compared with the Pippard length in the weak coupling theory,
& = kp/mA(kp)p =~ 1/7A(kp) (see for example, Ref.[36]); the magnitudes of £
are approximated fairly well by & whereas the kp-dependence is different. The

:. ..
average interparticle distance d = Amm.v / /kp, derived from p, = 3p = 1/d® is

also shown in the figure. The magnitudes of £ and d are very similar to each other
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as in the nucleon-nucleon case [10], whereas £ is 3 — 4 orders of magnitude larger
than d in metals. This indicates strong coupling feature in the sense that quark
Cooper pairs are compact and therefore bosonic. That is, fermion exchange is less
when their mutual overlap is small. If A, is changed to 100 MeV and 300 MeV
for example, A(kg) decreases to 90 — 98 % and 54 — 81 % of the original values,
respectively, for kp = 1.5 — 3.25 fm™!, whereas the changes in ¢ are negligibly
small.

?

Another quantity which can be compared with £ is the London penetra-
tion depth Ap, which is defined by /p/4meZp; in the relativistic case, where e,
and ps are the electric charge of the Cooper pair and the density of the super-
conducting component, respectively. This expression can be derived from the
relativistic Ginzburg-Landau theory developed in Ref.[4] (see also Refs.[30, 25]).
In the present ud 2 flavor case, A, >~ 20 - 8 fm for k¢ = 1.5 - 3.25 fm ™! is obtained
by adopting e, = 2e + (—3)e and ps = Zp,. Although Bailin and Love concluded
that quark matter is a superconductor of the first kind, £ > /2y, based on their
estimate, A(kp) ~ 1 MeV [4], the present quantitative study shows that quark
matter is a superconductor of the second kind at these densities as pointed out
in Ref.[30]. At asymptotically high densities, however, it changes to a supercon-
ductor of the first kind since the penetration depth decreases rapidly as density
increases. One should note that these discussion applies only to a part of mag-
netic field since the original photon and a gluon combine to a massless ‘rotated’
photon although both the electromagnetic U(1) and the color SU(3) break in color
superconductors, as recently discussed in Ref.[37].

4. Spatial Structure

Next, we turn to k-dependence at each kr. The compactness of the Cooper
pairs mentioned above indicates spreading of A(k) (Fig.2.(a)) and ¢(k) (Fig.2.(b))
in k-space. Figure 2.(a) shows that A(k) spreads to larger k& at higher densities
as expected, while the width of ¢(£) in Fig.2.(b), which corresponds to 1/¢, is
almost kp-independent as mentioned above since the quasiparticle energy E'(k)
in the denominator in Eq.(7) grows as k goes away from kp. The asymmetric
shapes of ¢(k) reflect the smallness of €. Its width is similar to that of o(k, k)
in Fig.2.(c).

Finally, we Fourier-transform ¢(k) to

8r) = 50z [ okYsolhr ek, (®

T on?

where jo(kr) is a spherical Bessel function, in order to look into the spatial struc-
ture of quark Cooper pairs more closely. This quantity has already been discussed
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for nucleon Cooper pairs in non-relativistic [39, 40] and relativistic {10] studies.
Although the coherence length £, corresponding to the root mean square distance
with respect to this wave function, is almost kp-independent, the shape of ¢(r)

k-
200 . .%NS & i is strongly kp-dependent; large-k components in high-density cases bring nodes
N ke=1 5(frmrt) —— . . .
y Mﬂwwmuuw in r-space. Conversely, ¢(r) is diffuse at low densities. In other words, quark
p=2.5(fm) -

kp=3.0(fm ) ——

Cooper pairs become more bosonic at higher densities.

Alk) (MeV)
g

r-space pair wave function

k=1 S(fmrl) ——
kp=2.0(Frr1)

kp=2.5(fm1) -
k=3.0(fm1) ——— 1

k (fm1)

o(r) (fm3)

k-space pair wave function

ke=1 S(fmY) ———
kp=2.0(fm-1)
ke=2.5(fror1)
ke=3.0(fm-1)

0 05 1 1.5 2 25 3
r{(fm)

Fig. 3. Pair wave function as a function of the distance r, calculated at kp = 1.5 -
3.0 fm~L.
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k() 5. Summary

k-space interaction To summarize, we have studied numerically the spatial structure of quark

Mﬂwwmﬁ"w ] Cooper pairs in the color 3*, isosinglet 1Sy channel by solving the gap equation in
M_ﬂw..wmﬁ”“w — full momentum range. Although the long-range magnetic interaction is predom-

inantly responsible for the quark-quark pairing, the gap function spreads also in
momentum space. The resulting coherence length is almost density independent
as well as the gap at the Fermi surface and is of magnitudes similar to the aver-
age interquark distance. The dependence of the pair wave function (condensate)
on the relative momentum and on the distance between two quarks that form a
Cooper pair has been presented. This indicates that quark Cooper pairs become
more bosonic at higher densities although the coherence length is almost density
independent.

v(ke.k) (fm?)

k (fm-1)

Fig. 2. (a) Gap function, (b) pair wave function, and (c) matrix element o(kr, k), as
functions of the momentum k, calculated at kp = 1.5 — 3.0 fm~1. Note that, in (c),
k = kr is excluded since at this point the diverging magnetic interaction does not

The author thanks T. Hatsuda for informing him of R. Horie's master
contribute to the gap equation [38].

thesis in Ref.[18] and for the communication of Ref.[38].
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List of Symbols

k=Magnitude of Quark 3-momentum

kp=Quark Fermi Momentum

M,=Current Quark Mass

Er=Quark Single-particle Energy

p=Quark Chemical Potential

A(k)=u-d Pairing Gap

E’(k)=Quark Quasiparticle Energy

q=Momentum Transfer in One Gluon Exchange Interaction
05(q?)=QCD Running Coupling Constant

g.=Cutoff Momentum to Avoid Infrared Divergence
Aqep=QCD Mass Scale

£=Coherence Length of Quark-Quark Pair Correlation
¢(k)=Quark Pair Wave Function

¢(r)=Its Fourier Transform
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