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Abstract

We construct phenomenologically a relativistic particle—particle channel interaction which suits
the gap equation for nuclear matter. This is done by introducidgraity-independemhomentum-
cutoff parameter to the relativistic mean field (Hartree and Hartree—Fock) models so as to reproduce
the pairing properties obtained by the Bonn-B potential and not to change the saturation property.
The interaction so obtained can be used for the relativistic Hartree—Bogoliubov calculation, but some
reservation is necessary for the relativistic Hartree—Fock—Bogoliubov calculatidf01 Elsevier
Science B.V. All rights reserved.

PACS:21.65.+f; 26.60.+c; 21.60.-n
Keywords:Superfluidity; Nuclear matter; Relativistic mean field

1. Introduction

Pairing correlation between nucleons is a key ingredient to describe the structure
of neutron stars and finite nuclei. There are two distinct ways of description of such
finite-densitynuclear many-body systems; the nonrelativistic and the relativistic ones.
The latter incorporates the mesons explicitly in addition to the nucleons in terms of
a field theory. Both describe the basic properties such as the saturation with a similar
quality in different manners. Irrespective of whether nonrelativistic or relativistic, however,
various theoretical approaches can be classified into two types: one is realistic studies
adopting phenomenological interactions constructed for finite-density systems from the
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beginning (hereafter we call this the P-type, indicating “phenomenological”), as often
done in the studies of heavy nuclei. And the other is microscopic studies based on bare
nucleon—nucleon interactions in free space (the B-type, indicating “bare”). In relativistic
studies, typical examples of these two types as for the particle—hole (p—h) channel are
the relativistic mean field (RMF) model and the Dirac—Brueckner—Hartree—Fock (DBHF)
method, respectively. As for the particle—particle (p—p) channel, that is, pairing correlation,
a bare interaction was used as the lowest-order contribution in the gap equation [1] in
a study of the B-type [2]. This is thought to be a good approximation at least for the
150 channel (Refs. [3,4], for example). The first relativistic study of the P-type of pairing
correlation in nuclear matter was done by Kucharek and Ring [5]. They adopted a one-
boson exchange (OBE) interaction with the coupling constants of the RMF model, which
we call the RMF interaction hereafter, aiming at a fully selfconsistent Hartree—Bogoliubov
calculation, which we call the P1-type, in the sense that both the p—h and the p—p channel
interactions are derived from a common Lagrangian. But the resulting pairing gaps were
about three times larger than those accepted in the nonrelativistic studies (see Fig. 6). The
reason can be ascribed to the fact that the coupling constants of the RMF model were
determined by physics involving only low momenta<{ k2, %(k,?ﬁ = po denoting the
saturation density of symmetric nuclear matter), and therefore the adopted OBE interaction
is not reliable at high momenta. After a five-year blank, some attempts to improve this were
done [6-8]. But their results were insufficient.

An alternative way is to adopt another interaction in the p—p channel while the
single-particle states are still given by the RMF model. We call this the P2-type. There
are some variations of this. The first one, which we call the P2a-type, adopts another
phenomenological interaction for the p—p channel. Actually, the nonrelativistic Gogny
force [9] was used combined with the single-particle states of the RMF model for
finite nuclei in Ref. [10] and subsequent works, and gave excellent results. The second
variation, which we call the P2b-type, is to adopt a bare interaction that describes the high-
momentum part realistically, the Bonn potential, again combined with the single-particle
states of the RMF model [11,12] (see also Ref. [13]). If one assumes that the RMF model
simulates roughly the DBHF calculation, this P2b-type can be regarded as simulating the
B-type calculation [2] mentioned above. The results of these P2a- and P2b-types are very
similar at densitieso < po. This supports a statement that the Gogny force resembles
a realistic free interaction in the low-density limit [14] (see also Ref. [4]). But a clear
difference can be seen at~ pg. This difference can also be seen in fully nonrelativistic
calculations; compare the results in Refs. [15,16], for example. The precise origin of this
difference has not been understood well. A comparison after taking the polarization effects
which have been known to be important at finite densities [17—-19] into account may be
necessary (see also Ref. [13]). The third variation, which we call thé-ty@b, is to
parameterize the p—p channel interaction in terms of a few scattering parameters. This
was actually examined by being combined with the DBHF calculation [20], which we call
the B-type (see also Ref. [21]). This method is free from model-dependent ambiguities
and meets the viewpoint of modern effective field theories [22,23] but is applicable only to
dilute systems. These classifications are summarized in Table 1.
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Table 1
Classification of various relativistic approaches to nucleon—nucleon pairing

Type p—h channel p—p channel (lowest order) References
B DBHF bare [2]

B’ DBHF effective range [20]

P1 RMF RMF [5-8,24]

P2a RMF another phenomenological [5,11,12]
P2b RMF bare [11-13]

P2y RMF effective range -

Since we are interested in a wide density range wherésfigap exists and would like
to respect the selfconsistency in the sense that both the p—h and the p—p channel interactions
are derived from a common Lagrangian, here we construct a phenomenological relativistic
nucleon—nucleon interaction based on the RMF interaction (the P1-type) by adjusting
to the pairing properties given by the RMF + Bonn calculation (the P2b-type). In other
words, we aim at constructing an interaction similar to the Gogny force in the sense that it
reproduces the pairing properties given by the bare interactions in spite of the fact that it
was constructed for the finite-density system from the beginning.

The contents of this paper are as follows: in Section 2 we present our method of
constructing a phenomenological p—p channel interaction for the superfluid gap equation.
This procedure is applied both to the Hartree and to the Hartree—Fock model. In Section 3,
we discuss the pairing properties obtained in the Hartree approximation. Note here that
we adopt the no-sea approximation throughout this paper and therefore the relativistic
Hartree model means the so-called Relativistic Mean Field model. In Section 4, the
relativistic Hartree—Fock—Bogoliubov calculations with or without the modulation of the
high-momentum interaction are presented. Conclusions are given in Section 5.

2. Construction of a relativistic particle—particle channel interaction

We start from the ordinary—» model Lagrangian density:
L=y d" — MY + 3(8,0)(0"0) — 3m20? — 22, Q" + Im2w 0"
+ ga‘&(”/f - gw‘&)’,uwul/fa
Qv = 0wy — dywy. 1)

The antisymmetrized matrix element of the RMF interactidnderived from this
Lagrangian is defined by

(p, k) = (ps’, ps’|V|ks, ks) — {ps’, ps’| V| Ks, ks) )

under an instantaneous approximation, with tildes denoting time reversal. After a spin
average and an angle integration are performed to project out-theve component, its
concrete form is given by
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ok — g2 ) 2(E;;E,;*<+1\4>*<2)—(pz+k2+m§)I (p+K)2+m?
T apk (p— 07+ m2
2 2., .2
k
+ ga)* (ZE;;Ezc_M*Z)ln((p'i' )2+m(;>’
2E;;Ekpk (p—k)e+ms
where

Ef =Vk2+ M*2. ®3)

Our policy of constructing a phenomenological interaction proposed above is to introduce a
density-independepiarameterd so as not to change the Hartree part with the momentum
transferq = 0 which determines the single-particle energies, respecting that the original
parameters of the RMF are density-independent. In the Hartree—Fock modglAbe

part also contributes to the mean field. This will be discussed in Section 4 in detail.
Since the high-momentum part of the RMF interaction does not have a firm experimental
basis as mentioned above, we suppose there is room to modify that part. Needless to
say, such a modification should be checked by studying independent phenomena, for
example, medium-energy heavy-ion collisions. Some adjustments of the density-dependent
s force to the ones that give realistic pairing properties have already been examined in the
nonrelativistic studies [4,14]. Among them, a fit to a bare interaction irftee0 channel

was done [4]. We aim at a similar procedure in the relativistic model forteel channel.

In the preceding letter [24], the upper bounds of the momentum integration in the gap
equation

(0.¢]
1 [ A(k) 5
A( )=——/v(p,k) k= dk, 4
g 8r2 ) V(Er — Exe)? + A2(k) *)
where
Ex = Ef + go(0°), (5)
and the nucleon effective mass equation
2 Ty
8 Y 2,2
M*=M— =5 — | ———vik“dk, 6
m2 27120/ ’7k2+M*2vk (6)

where the spin—isospin factgr = 4 and 2 indicate symmetric nuclear matter and pure
neutron matter, respectively, were cut at a finite valyeas usually done in condensed-
matter physics, since the gap increases monotonically until reaching Kucharek and Ring’s
value when the model space is enlarged as shown in Fig. 3 of Ref. [8], ipilé) is left
unchanged. We call this method the sudden cutoff hereafter. This was done first in Ref. [5]
by inspection. We proposed a quantitative method to determiinehich is described
below, and obtained 3.60 fm for the linearo—w parameter set in Ref. [24]. This value
almost coincides with their value, about 3.65fhfor the NL2 parameter set.

In the present paper, we examine smooth cutoffs that weaken the high-momentum part;
a form factorf (q%), q = p — k, is applied to each nucleon—-meson vertex(p, k) while
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the upper bounds of the integrals are conceptually infinity. They are replaced numerically
by a finite number, 20 fm! which has been proved to be large enough in Ref. [8]. Since
there is no decisive reasoning to choose a specific form, we examine four types:

2 42
monopole: f(g%) = AT
. A2 \?
A2 _ 2
strong (8):  f(q%) = T4—32
o _ AZ—mf
strong (b): f(9°) = e (i =0, w). (7

Note that the sudden cutoff above was appliekl,toot toq.

The parameten is determined so as to minimize the difference in the pairing properties
from the results of the P2b-type RMF + Bonn calculation. Assuming the P2b-type roughly
simulates the B-type as mentioned in Section 1, conceptually we aim at fitting to the pairing
properties given by the fully microscopic B-type calculation. Here we adopt the Bonn-B
potential because this has a moderate property among the available (charge-independent)
versions A, B, and C [25]. The pair wave function,

¢k) = %%]((k))’ Eqp(k) = \/(Ek — Exp)? + A2(k), (8)
is related to the gap at the Fermi surface,
o
A(kp) = —i/ﬁ(kF, k)¢ (k)& dk, (9)
452
0
and its derivative determines the coherence length [26],
o) %
dep |2
f ‘ o« k2 dk
f=—1| . (10)
/ || %k dk
0

which measures the spatial size of the Cooper pairs. These expressions indicate that
A(kp) and & carry independent informatiory and dp/dk, respectively, in strongly-
coupled systems, whereas they are intimately related to each other in weakly-coupled ones.
Therefore we search fot which minimizes

1 { (A(kF)RMF - A(kF)Bonn)z (ERMF - EBonn)z} 11
X TN g A(kr)Bonn * &Bonn ’ ()
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where the subscripts “RMF” and “Bonn” denote the RMF interaction includingnd
the Bonn-B potential, respectively, while the single-particle states are determined by the
original RMF model in both cases.

The actual numerical task is to solve the gap equation (4) and the effective mass equation
for the nucleon (6). They couple to each other through Eq. (5) and

2 1< Ek - EkF >
Uk = = 1 - .
2 V(Ex — Exp)? + A2(k)
The parameters of the standardw model that we adopt arg? = 91.64,g2 = 136.2,
my = 550 MeV, m, = 783 MeV, andM = 939 MeV [27]. N in x? is taken to be 11;

kr=0.2,03,...,1.2 fm 1 Inthe following, the results for symmetric nuclear matter are
presented. Those for pure neutron matter are very similar exceptthat is a little larger

(12)

Determination of A (Hartree)
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Fig. 1. (a) Curvature of2 in Eq. (11) with respect to the cutoff parameter (b) A-dependence of
the pairing gap at the Fermi surfade,= 0.9 fm~L. These are the results of the Hartree—Bogoliubov
calculation.
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due to a larger effective magg* as shown in Fig. 1(b) of Ref. [24]. Minimizations of

x? give the optimal valuesp = 7.26, 10.66, and 10.98 fnt for the first three types of
form factor, respectively, as shown in Fig. 1(a). We do not choose an op#infait the
strong (b) type because of its pathologiceldependence shown in Fig. 1(b). Fig. 1(b)
shows that theA-dependence of these smooth cutoff cases is very mild, except for the
strong (b) type, in comparison with the sudden cutoff case. The very gtetgpendence

in the strong (b) case is due to the consecutive depression of the attraction and the repulsion
at aroundA ~ m, and~ m,, respectively. In the strong (a) case, although another smaller
A around 3 fnr! can give similarA(kg), ©(kr, k) and, consequently\ (k) exhibit an
unphysical staggering at aroukd- m, . Therefore we discard this. In addition, although
the strong (a) case withh = 10.98 fnm! gives practically the samer-dependence of
A(kg) and& (in Fig. 2 shown later)p(p, k) =0 at A = || = |p — K| brings about an
unphysical staggering it (k) and¢ (k); this leads to an oscillatory structure irspace

with a period~ 7 /A. Therefore we discard this, too. Form factors with simitaare also
suggested in a study of medium- energy heavy-ion collisions [28]. This indicates that the
present results have a physical meaning.

3. Pairing properties obtained in the relativistic Hartree—Bogoliubov calculation by
using the constructed interaction

Fig. 2 presents the results far(kg) andé as functions of the Fermi momentukn,
obtained by using the cutoff parameters so determined. Both the monopole and the dipole
cases reproduce the results from the Bonn-B potential very well, as the sudden cutoff case
studied in Ref. [24], in a wide and physically relevant density range, in the sense that
pairing in finite nuclei occurs near the nuclear surface where density is lower than the
saturation point [29-31] and that the calculated rangg-afimost corresponds to that of
the inner crust of neutron stars [32]. This is our first conclusion. In the present method
with a density-independerutoff parameter, some small deviations remain: the overall
slight peak shift to highekr in A(kg) and the deviation ii§ at the highestg are brought
about by the systematic deviation in the critical density where the gap closes, between
the calculations adopting bare interactions and those adopting phenomenological ones as
mentioned above. The deviation at the lowgsis due to the feature that the present model
is based on the mean-field picture for the finite-density system; this is a different point from
the three-parameter fitting in Refs. [4,14]. Actually, in such an extremely dilute system, the
effective-range approximation for free scattering holds well [20].

Next we look into the momentum dependencégat 0.9 fm~1, whereA (kp) becomes
almost maximum. Fig. 3(a) showg(k). It is evident that the monopole form factor
gives the result identical to the Bonn-potential case as in the sudden cutoff case. This
demonstrates clearly the effectiveness of the interaction constructed here. Since we
confirmed that the results of the monopole and the dipole cases coincide within the width of
the line, hereafter only the monopole case will be shown as a representative. This quantity
peaks atk = kg as seen from Eg. (8). The width of the peak represents the reciprocal of
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Fig. 2. (a) Pairing gap at the Fermi surface, and (b) coherence length, as functions of the Fermi
momentumkg, obtained by adopting the Bonn-B potential, the sudden cutoff in Ref. [24] and
the two types of effective interaction constructed in this study. These are the results of the
Hartree—Bogoliubov calculation.

the coherence length. Eq. (8) shows th&t) is composed ofA (k) and the quasiparticle
energyEqp(k). Fig. 3(b) graphs the former. The gaps of both the sudden cutoff and the
monopole form factor cases are almost identical upto2kg, and deviations are seen only

at larger momenta whegqp(k) are large and accordingly pairing is not important. This is
not a trivial result since the bare interaction is more repulsive than the phenomenological
ones constructed here even at the momentum region whéneare almost identical as
shown in Fig. 3(c). The reason why we compare the constrystpdchannelnteraction

with the bare interaction is as follows: although evidently the RMF interaction corresponds
to a medium-renormalized one, not to a bare one, here we aim at constructing an interaction
similar to the Gogny force in the sense that it reproduces the pairing properties given
by the bare interactions in spite of the fact that it was constructed for the finite-density
system from the beginning. Accordingly we compare them to see the difference between an
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k-space pair wave function (Hartree)
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Fig. 3. (a) Pair wave function, (b) pairing gap, and (c) matrix elemgkg, k), as functions of the
momentumk, calculated at a Fermi momentugp = 0.9 fm~1, by adopting the Bonn-B potential,
the sudden cutoff in Ref. [24] and the effective interaction involving the optimal monopole form
factor constructed in this study. These are the results of the Hartree—Bogoliubov calculation.
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effective and a bare interactions which give similar pairing properties. This figure indicates
that the difference is roughkrindependent.

Here we turn to the dependenceqrthe distance between the two nucleons that form
a Cooper pair, in order to look into the physical contents further. The gap equation, before
the angle integration that results in Eq. (4), can be Fourier-transformed to the local form,
A(r) = —o(r)¢(r) in r-space in the nonrelativistic limit [33]. One can see from this
expression that, assumirgr) is finite,¢ (r) is pushed outwards whetir) has a repulsive
core, as the Brueckner wave functions [3,34]. This is related to an observation that the gap
equation reduces to a Schrédinger equation for the relative motion of the two particle that
form a Cooper pair in the limit oﬁ,f — 0, i.e., at highk [4,35,36]. This, on the other hand,

r-space pair wave function (Hartree)
0.008 - . . ;
0.007 r
0.006
0.005
0.004
0.003
0.002
0.001

Bonn-B ———
sudden cut(3.60) - .
monopole(7.26)

¢(r) (fm=3)

-0.001 ' ' '

r (fm)
r-space gap (Hartree)

&
S _
Q
= |
S
q 4
Bonn-B ———
S H sudden cut(3.60) 1
6 (b) monopole(7.26)
0 1 2 3 4 5 6 7

r (fm)

Fig. 4. (a) Pair wave function, and (b) pairing gap, as functions of the distacetculated at a Fermi
momentumkg = 0.9 fm~—1, by adopting the Bonn-B potential, the sudden cutoff in Ref. [24] and the
effective interaction involving the optimal monopole form factor constructed in this study. These are
the results of the Hartree—Bogoliubov calculation.
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masks practically the differences in the repulsive interactions at short range, in other words,
widely spread irk-space. The-space pair wave functions

1 o0
b0 =5 / 6 (K) jo(kr)k2 dk, (13)
0

where jo(kr) is a spherical Bessel function, &t = 0.9 fm~! are shown in Fig. 4(a).
Appreciable differences are seen only in the core region as mentioned above. The
coherence length, that is a typical spatial scale of pairing correlation, is about 6 fm at
this ke as shown in Fig. 2(b); this is almost one order of magnitude larger than the size
of the core region. Therefore, practically we can safely use the p—p channel interaction,
including the sudden cutoff one, constructed here for the gap equation. Fig. 4(b) shows the
corresponding\ (r). The gaps are positive at the outside of the core and negative inside
in all cases. Note here that the gap equation is invariant with respect to the overall sign
inversion; we defined aa (kp) > 0. Their depths at the inside region reflect the heights

of the repulsive core. In the sudden cutoff casér;) behaves somewhat differently from
others due to the lack of high-momentum components.

4. Relativistic Hartree—Fock—Bogoliubov calculation with a cutoff

In the preceding sections, we have shown that we can construct phenomenologically
relativistic p—p channel interactions which give realistic pairing properties by introducing
a density-independermhomentum-cutoff parameter to the (no-sea) relativistic Hartree
model. To do this, we have fully utilized the property that only the- 0 part of the
interaction contributes to the Hartree mean field. To see the further applicability of the
method presented above, the relativistic Hartree—Fock (RHF) model, in whichsthe
part of the interaction also contributes to the p—h channel, should be examined. In the
following, we investigate the relativistic Hartree—Fock—Bogoliubov (RHFB) model with a
momentum-cutoff form factor, by comparison with the corresponding Hartree—Bogoliubov
calculation. An RHFB calculation with a sudden cutoff was previously done by Guimarées
et al. [6]. They obtained very large pairing gaps in the no-sea approximation (Fig. 4 of
Ref. [6]). Before studying the effects of the form factor to modulate smoothly the high-
momentum interaction, we examine the sudden cutoff — this is a straightforward extension
of our previous calculation in Ref. [24] to the RHFB.

The RHF model was described in detail in Refs. [27,37,38], for example. The difference
from the Hartree model is the second term in Fig. 5. This introduces the space component
of the vector self-energys;V, and all the Lorentz components &f — the scalarx’s, the
vector (time)X?, and the vector (spacg)¥ — become momentum dependent:

2(p)=2%p) —v°Z%p) +y -p=V(p). (14)

In contrast, in the Hartree modelV is not present, s and X° are momentum
independent, an&? is fully determined by the input density. Their concrete forms are
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k
k -~
. \\
—iz (k)= - + k—qh 4
q:O /I
k
k

Fig. 5. Feynman diagram representing the nucleon self-energy in the Hartree—Fock model.

2 ke M*(k)
Yy 8 3
> (p)=— =< [ &%k
) (2n)3m?,/ E*(k)
0
1w
+ 5 /dkk k) L4800 (P10 = 85,00(p. )]
0
2 kg 1 kr
Yy 8
2%p) =—(2n)3m—‘;/d3k - m/dkk[%gﬁ@a@,k) +3820,(p.b)].
“0 0
kg
\% 1 k* 1 .2 2
2P ==y dkkE*(k)[zgg%(p,k)+gw<1>w(p,k)], (15)
0
with
Ai(p, k) + 2pk 1
O1(puk) = FELLEIT 0 = g A0k~
L k]
Ai(p.k)=p*+ K>+ m? (i=0, ) (16)

as Eqgs. (5.76)—(5.79) in Ref. [27]. The retardation effect is neglected here. Note that the
momentum dependence &f* is stemming from that oS; M* = M + XS (see Eq. (6)).
When pairing is introducedfé‘F is replaced by[;° v?, and thereforexS(p), %(p),
XV(p), andA(p) (Eq. (4)) couple through Egs. (12) and (5). When the momentum space
is discretized ta meshes, these quantities form a setiofddmensional coupled nonlinear
equations; this is a contrast to tle+ 1)-dimensional ones —A(p) and a momentum-
independend* or X5 — in the Hartree case.

In order to reproduce the saturation, the coupling constants are adjugtge-t83.11,
g(% = 108.05 with the masses being unchanged [27]. We adopt this parameter set for the
time being. Other sets will be examined later. Note that the pairing contribution to the
energy density around the saturation point is negligible. First we compare the gap at the
Fermi surface calculated without a cutoff in RHFB and RHB, in Fig. 6. We call them the
full calculations hereafter. The calculated gaps in the former are larger than those in the
latter, by about 4 MeV at the maximum, for example. This difference is brought about by
that in the coupling constants rather than the Fock effect itself [39]. Actually we confirmed
that a Hartree calculation with the coupling constants of the Hartree—Fock gave almost the
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Gap at Fermi surface (no cutoff)
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Fig. 6. Pairing gap at the Fermi surface as a function of the Fermi momentuobtained by the

Hartree—Fock—Bogoliubov and the Hartree—Bogoliubov calculations with a large enough momentum
cutoff, 20 fr 1.
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Fig. 7. The same as Fig. 1(b) but for the Hartree—Fock—Bogoliubov calculations.

same gaps as those given by the Hartree—Fock calculation although such a calculation
destroys the saturation completely. This result reflects the property that the gap is not
sensitive to the detail of the single-particle states. If the coupling constants of Ref. [6],
g§ = 96.392,g3) = 129.260 are adopted, calculated gaps become even larger; about 15
MeV at the maximum, for example. But it is evident that this is still smaller than their
calculated value in their Fig. 4. The reason for this difference is not clear.

Now let us introduce a sudden cutoff in the upper bound of the momentum integrations
in X(p)’s andA(p) as in the previous Hartree case. The result is graphed in Fig. 7 by the
long-dashed curve. Although a plateau appears aradua® fm~1 as in the corresponding
case in Fig. 1(b), the gap value of the present plateau is about 4.5 MeV, which is larger than
the physical value given by the bare interaction, about 2.8 MeV at this density. Applying the
same procedure as in the previous Hartree case, the obtained optimal cutoff is 1126 fm
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This indicates that the attractive interaction alone accounts for the physical magnitude
of the gap since thet of the plateau corresponds to theat which v (kg, k) turns from
attractive to repulsive [24]. Note that evidently the RHFB calculation with this sudden
cutoff can not be applied to the case with> A.

Next we proceed to the smooth cutoff — the form factor in the nucleon—meson vertices.
The monopole and the dipole types are examined here. Theiependence is included
in Fig. 7. The optimal cutoffs arel = 3.40 fni! and 5.02 fnr! for the monopole and
the dipole types, respectively. These values are smaller than the corresponding ones in
the Hartree cases since the original gap values given by the full calculation are larger.
Interestingly, however, their ratioj (monopole/A(dipole), almost coincides with that of

k-space p-p int. (Hartree-Fock monopole 3.40)

8 I I ' T T T
® kp=0.4fm-1
o1 kp=0.9fm-1 ———— |
kp=1.42fm-1
4 _
E 2f |
E: 0 e U
=
2 b _
4 _
-6 .
o 1 2 3 4 5 6 7 38
k(fm—l)
k-space p-p int. (Hartree monopole 7.26)
8 I I ' ! T T
®) kp=0.4fm-1
o1 kp=0.9fm-1 ———— |
kp=1.42fm-1 e
E 2
f“e': 0L
=

k (fm1)

Fig. 8. Matrix element (kg, k), as a function of the momentukn obtained by (a) the Hartree—Fock,
and (b) the Hartree calculations with the optimal monopole form factors, calculated at three Fermi

momentakg.
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the Hartree case. The p—p channel interactions including the optimal monopole form factor
are compared in Fig. 8. The high-momentum repulsive part, in particular at lower densities,
is strongly suppressed in the RHFB case. This testifies the discussion about Fig. 7 above
that the optimal cutoffs are smaller. In Fig. 9 we preseir) andé calculated by adopting
the optimal cutoffs. They reproduce the values given by the Bonn-B potential to an extent
similar to the Hartree case or a little better excapkr) of the sudden cutoff case. Again
the results of the monopole and the dipole form factors coincide with each other within the
width of the line.

Although the pairing properties of the RHFB with the optimal form factor presented
in Fig. 9 are essentially the same as those of the corresponding Hartree calculation, an
essential feature of the Hartree—Fock model is that the form factor can affect the saturation
property. Therefore we have to check this before concluding the applicability of the present

Gap at Fermi surface (Hartree-Fock)

5 . : : . . .
Bonn-B ——
@ sudden cut(1.26)
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- (b | | ' I Bonn-B ——
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monopole(3.40)
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g 0 |
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20 r ]
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0 : s . , ) .

Fig. 9. The same as Fig. 2 but for the Hartree—Fock—Bogoliubov calculations.
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Energy per Nucleon
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Fig. 10. Energy density including the pairing contributions (both in the Hartree—Fock—Bogoliubov
and the Hartree—Bogoliubov calculations) and the cutoff effects (only in the former) as a function of
the Fermi momentumg.

procedure. The energy density is graphed as a function of the Fermi momentum in Fig. 10.
This figure can be compared with Fig. 40 in Ref. [27]. Here the pairing correlation energy
(both cases) and the cutoff contribution (Hartree—Fock case only) are additionally included.
Although these two curves almost coincide with each other at low densities, the cutoff
effect destroys the saturation in the RHFB case. This is because suppressing the high-
momentum repulsion breaks the balance between the attraction and the repulsion, and the
latter contribute more at higher densities (see Fig. 8(a)). To see this more closely, the cutoff
dependence of the energy density without the pairing contribution at the saturation density,
k,(:’ = 1.42 frr 1, is shown in Fig. 11. In the large-limit, the energy densities approaches

to about—15.69 MeV, which is 0.38% less bound than the original value in Ref. [27],
—15.75 MeV, because of the instantaneous approximation. This figure shows that

Ap_p < Ap_h, (17)

if we call the cutoff which reproduces the pairing properties and which does the saturation
propertiesAp_p and Ap_n, respectively.

Up to now, we used a parameter set of Serot and Walecka. To complete the discussion,
other sets with different characteristics are also examined here. One is a set used by
Bouyssy et al.g? = 69.62, g2 = 15381, m, = 440 MeV, m,, = 783 MeV, andM =
9389 MeV, which gives saturation :k@ =1.30 fm~1 [38]. A distinct feature of this set
is that the plateau appears at very small pairing gap (see Fig. 7). This indicates that the
repulsive part also contributes to the gap as in the Hartree case, and accoutlinglwill
be larger than in the case of Serot and Walecka'’s set. Actually, the optimal monopole cutoff
is 5.22 frm 1, which is larger than 3.40 fm' in the previous case. But Fig. 11 shows that
still Ap_p < Ap_h. Another is a set used by Jaminon et al. [37]. An interesting feature of
this set is that the saturation (I# = 1.36 fn 1) is given by introducing a “weak” form
factor [40]
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Cutoff dependence (Hartree-Fock)
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Fig. 11. Energy density at the saturation density correspondikﬁ tbtained by the Hartree—Fock
calculations (without pairing), calculated as a function of the momentum-cutoff parameter in the
form factors.k2 = 1.42 fm1 for the first two cases, while 1.30 fnt for the third case. Note that

the scale of the abscissa is different from Fig. 7.

2 A2

f(C] )= m (18)
from the beginning. Note that herg is the square of the 4-momentum transfer and
therefore this contains a retardation effect. The parameterg?are93.87, g2 = 12755,
my =550 MeV,m,, = 7828 MeV, andA = 7.754 fmL. SinceM is not shown explicitly,
939 MeV is adopted. The RHFB calculation with this form factor under the instantaneous
approximation gives pairing gaps which is larger than the physical valn@s;) ~ 8.5
MeV at the maximum, for example. This means that stijy , < Ap_n is necessary to
reproduce the physical pairing gap.

In all the calculations above, the cutoff in the form factors is commoa tnd w.
Referring to the Bonn potential and Ref. [28], for examplg,# A,, is another option. Of
course large deviations from, = A, destroy the saturation at least when the coupling
constants are kept unchanged. We examined some cases in a limitedAgjide,= 0.70
(~my/my,) — 1.2, but the results were negative.

5. Conclusions

We have constructed phenomenologically a particle—particle channel interaction which
suits the gap equation for nuclear matter. This was done by introducing a density-
independent momentum-cutoff parameter to the one-boson exchange interaction derived
from the Lagrangian of the RMF model and adjusting it to the pairing properties obtained
by the Bonn-B potential. The model pairing properties were calculated by using the RMF
model in the p—h channel and the Bonn-B potential in the p—p channel utilizing the
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properties that the RMF model simulates crudetiie G-matrices in the DBHF calculation

and that the pairing properties are not sensitive to the detail of the single-particle states. By
this procedure we aimed at constructing an interaction like the Gogny force in the sense that
it reproduces the pairing properties given by the bare interactions in spite of the fact that it

was constructed for the finite-density system from the beginning. The actual determination

of the optimal cutoff parameter was done by the method proposed in our preceding letter
for the Hartree mean field plus a sudden cutoff [24].

In the present paper, first we applied this method to the (no-sea) relativistic Hartree
model plus various types of form factor which modulates the high-momentum repulsion
that spoils the pairing properties. Among the four types examined, the monopole and
the dipole form factors exhibit desired properties. Close analyses in momentum space
and coordinate space have clarified that the gap equation involves a mechanism to mask
the difference in the short-range repulsion between the bare and the in-medium effective
interactions and that, in the typical spatial scale of pairing phenomena determined by the
coherence length, practically there are no difference in the pairing properties.

Second we performed RHFB calculations with and without a momentum cutoff —
a sudden cutoff and two types of form factor. The reason why we examined the RHFB
separately is that the form factor which modulatesdhg 0 part of the interaction also
affects the p—h channel. The same procedure was applied; the resulting optimal cutoffs
are smaller than those for the Hartree model because the original gap values given by the
full calculation without a cutoff are larger. Interestingly, the ratitmonopole/A (dipole)
almost coincides with that for the Hartree model. Having confirmed that these optimal form
factors reproduce\ (kp) andé with a quality similar to that in the Hartree calculation, we
looked at the saturation curve of the energy density. Although the results of the RHB and
the RHFB each with the optimal form factor coincide with each other ugte 1 fm=1,
the result for the latter starts to deviate at larger This indicates thatip_p < Ap_p
is necessary in order also to reproduce the saturation simultaneously using the RMF
interaction both in the p—h and the p—p channels. This holds also for the other parameter
sets with characteristic features mentioned in the previous section.

These results support the observation that the high-momentum components of the
original RMF interaction should be refined. The modulated interaction obtained here by
the proposed one-parameter fitting can be successfully used for the relativistic Hartree—
Bogoliubov calculation. But its applicability to the relativistic Hartree—Fock—Bogoliubov
calculation is limited to low densities.
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