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We apply the Relativistic Mean Field (RMF) model to the Tilted Axis Cranking (TAC). As a test of our numerical
code, we first investigate the ground state rotational band in 2*Mg.

Introduction

Recently obtained data of the so-called shears bands in the
proton rich Pb isotopes are well described within the frame-
work of the TAC model. In the TAC approximation, the
nucleus rotates around the axis which is tilted from its prin-
cipal axes. In the shears mechanism, the magnetic dipole
vector, which arises from few proton particles(holes) and few
neutron holes(particles) in high j orbitals, rotates around the
total angular momentum vector. At the band head, the pro-
ton and the neutron angular momenta are almost perpendic-
ular. With increasing the rotational frequency, these angular
momenta align toward the total angular momentum. Conse-
quently, the direction of the total angular momentum does
not change so much and regular rotational bands are formed
in spite of the fact that the density distribution of the nu-
cleus is almost spherical. These kinds of rotation are called
magnetic rotation in order to distinguish from the usual col-
lective rotation in well-deformed nuclei (called electric rota-
tion). Magnetic rotations are also observed in other regions
such as A ~ 140, 110 and recently 80 regions.

From the theoretical side, such tilted axis rotation has been
well examined by the pairing + QQ model, shell model and
particle-rotor model. Qualitatively, these models can explain
the observed trends. For quantitative description, however,
fully microscopic self-consistent calculations are desirable. To
this time, only few investigations by using such models have
been done. Therefore, in this work, we develop the RMF
code which can be applied to the study of the tilted axis
rotation. The RMF model has been successfully applied to
many phenomena in nuclear physics in the low energy re-
gion. Rotating nuclei are also examined within the context
of the RMF model. However, such applications are limited
only to the 1-dimensional case (PAC: Principal axis crank-
ing) so far. Because the RMF model is a phenomenological
one, its applicability should be examined further. This is
another motivation why we try to apply the RMF model to
such tilted axis rotation.

Formulation

The starting point of the RMF model is the following La-
grangian, which contains the nucleon and several kinds of
meson fields, such as o-, w- and p-mesons, together with the
photon fields (denoted by A) mediating the Coulomb inter-
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Lint is the interaction part between nucleons and mesons:
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In the standard applications, non-linear self interactions
among the o-mesons,
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are also included.

For application to rotating nuclei within the cranking as-
sumption, it is necessary to write the Lagrangian in a uni-
formly rotating frame which rotates around some fixed axis
with a constant angular velocity @ = (Qg,Qy,Q.), from
which the equations of motion in this frame can be obtained.
Because the rotating frame is not an inertial frame, a fully
covariant formulation is desirable, and we obtain this us-
ing the technique of general relativity known as tetrad for-
malism. The procedure is as follows. First, according to
tetrad formalism, we can write the Lagrangian in the non-
inertial frame represented by the metric tensor g,.. Then
the variational principle gives the equations of motion in this
non-inertial frame. Finally, substituting the metric tensor
of the uniformly rotating frame leads to the desired equa-
tions of motion. In the 1-dimensional case, the detail was
already shown in Ref. 1. Extension to the 3-dimensional case
is straightforward. The only difference is that the metric
tensor substituted into the general equations is now truly
3-dimensional one which can be constructed from the rela-
tion between the laboratory coordinate (T, X,Y, Z) and the
rotating one (¢, z,y, 2),
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where we abbreviate sin 61 2 3 and cos 01 2,3 as s1,2,3 and ¢1 2.3,



respectively. The metric tensor is then
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here the rotational frequency is connected with the Euler an-
gles (01,02,03) as
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The resulting equations are
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where the p-meson and photon fields are omitted for simplic-
ity, although they are included in the numerical calculation.
These equations are the same as those obtained by the Mu-
nich group."?

Numerical code

The technique to solve the coupled equations of motion is
essentially the same as that in the 1-dimensional case. The
nucleon and meson fields are expanded in terms of the 3-
dimensional harmonic oscillator eigenfunctions. In the TAC
approximation, the signature quantum number is not con-
served. Therefore, the parity is the only symmetry which is
assumed in our code. One of the main differences from the
1-dimensional case is the Coriolis term for the nucleon fields
which becomes —Q,J, — QyJy — Q.J.. For simplicity, the
Coriolis terms for the meson and photon fields, which appear
in the Klein-Gordon equations, are neglected. It is known
that these Coriolis terms for the meson and photon fields
give very small contributions and do not affect the results, at
least in the 1-dimensional case.

As a result of breaking the reflection symmetry with respect
to the principal planes, the matrix elements of the Dirac
Hamiltonian become complex numbers contrary to the 1-
dimensional case. If we restrict ourselves to the 2-dimensional
cranking in which the rotational axis is deviated from the
principal axes but still in one of the principal planes, such
components that make the matrix elements imaginary are
small and can be neglected. In the 3-dimensional case, on
the other hand, diagonalizing the complex Hamiltonian is
necessary. Because we will also examine the tilted bands in
triaxially deformed nuclei in future, which requires the 3-
dimensional calculation, we decided to diagonalize the com-
plex Hamiltonian in our code.

We also add the following three constraints,
—AeBz — AyBy — A\ B;,

here
B, = f\/gyz,By = f\/gzac,Bz = f\/gxy,

to the Dirac Hamiltonian, which are necessary to fulfill the
condition of the principal frame,®) that is, (Q2+1) = 0 and

(Q2—2) = (Q22). Actually we adopt the quadratic con-
straints;
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If we choose relatively large value of C and set B3 ed)

Bfreauired) Beaured) 0 the resulting values of
(Bz), (By) and (B:) become very small.

In the present code, the pairing correlations are not taken
into account. They should be included for precise descrip-
tion of the properties of heavy and medium-heavy nuclei,
although including the pairing correlations makes the calcu-
lation very time-consuming one. We will extend our code
so as to include the pairing correlations within Relativistic
Hartree Bogoliubov framework in near future.

Results for >*Mg

As a check of the numerical code, we first investigate the
ground state rotational band in 2*Mg. Although there is no
evidence of appearance of such tilted axis rotation in the sd-
shell nuclei, we think this nucleus is convenient for the pur-
pose of checking our code. This is because for lighter nuclei,
large model space is not required, that is, the cutoff param-
eters for expansions of the nucleon and meson fields can be
set to smaller values compared with the case of heavier nu-
clei. For stable sd shell nuclei, the pairing correlations are
expected to play only a minor role, which might justify our
calculation of 2*Mg without pairing to some extent.

As for the cutoffs, we adopt the well-known energy cut-
off ¥ rather than simple cutoff by major shell numbers.
All basis states below E = (mg + 0.5)wz + (my + 0.5)w,
+ (mz + 0.5)w. < 9.5wp (MeV) are taken for the expansion
of nucleon and meson fields (as stated in Ref. 2, twice values
of wz,y,» and wo are used for the meson fields). Deforma-
tion parameters of the harmonic oscillator basis are fixed to
Bo =0.5 and v = 0.

Figure 1 shows the total spin of the ground state band in
24Mg. Although the spin value corresponding to the band
termination is 12, the result is shown only up to Q = 2.5
MeV (I ~8). At I =8, the v ~ —120° non-collective state
is energetically favored and I = 8 state which belongs to the
ground state band does not become the yrast. The moment
of inertia which is shown in Fig. 2 increases slightly with ro-
tational frequency. The quadrupole moment decreases from
Q ~ 107fm? (at Q = 0.1 MeV) to 83 fm? (at Q = 2.5 MeV).
The triaxial deformation is rather small at all frequencies
considered.
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Fig. 1. Total spin of the ground state rotational band in **Mg as a func-
tion of the rotational frequency.
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Fig. 2. Kinematical moment of inertia of the ground state rotational band
in 2*Mg as a function of the rotational frequency.

0 ——
P ——

0 % £ y

~ (1011791

e a0f (101 3/2] T
-40 * [110 1/2] ]

[000 1/2]

-50 .

0O 10 20 30 40 50
O(deg.)

L L

60 70 80 90

Fig. 3. Single neutron routhians of the ground state rotational band in
Mg as functions of the tilted angle. All orbits below Fermi level
are shown. Solid lines show the @ = + orbits while dotted lines
correspond to the @ = — ones.
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Fig. 4. Total routhians of the ground state rotational band in Mg as
functions of the tilted angle.

Now we turn to the tilted axis cranking calculation. Figure 3
shows all the single neutron routhians below Fermi level as
functions of the tilted angle 6 at 2 = 1.3MeV. All orbits
seem to favor the PAC state (ether § = 90° or 0°) although
some of them are rather flat. In Fig. 4, the total routhians
are shown as functions of the tilted angle for selected values
of Q. Figure. 4 simply represents that the PAC states are
in the lowest. At Q = 0.7 and 1.3MeV, § = 90° is favored,
while at 2 = 1.9 MeV we find that the minimum is shifted to
0 = 0° non-collective state. As for this band, we could not
find any tilted minima as expected.

Summary

We developed a numerical code of the RMF model which
can treat the tilted axis rotation. The formulation is very
similar to the 1-dimensional case, the only difference is now
the metric tensor takes 3-dimensional form. As for the nu-
merical technique, we again adopt the same technique as the
1-dimensional code. To check the code, we first calculated the
ground state rotational band in 2*Mg. As expected, no tilted
minima are observed in this nucleus. In the present version
of our code, the pairing interactions are not included. We
are now trying to include them within Relativistic Hartree
Bogoliubov framework.
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