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We construct relativistic effective particle-particle channel interactions which suit the gap equation for infinite nuclear
matter. This is done by introducing a density-independent momentum-cutoff parameter to the relativistic mean field
model so as to reproduce the pairing properties obtained by the Bonn-B potential and not to change the saturation
property. The significance of the short-range correlation in the gap equation is also discussed.

18y pairing gap A in infinite nuclear matter is obtained by
solving the gap equation,
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with ¢ indicating the antisymmetrized matrix elements of
the S wave particle-particle interaction vpp. A wide-range
integration up to high momenta is inevitable in strongly-
coupled systems such as the nuclear many-body ones. One
can see from this equation that the physical ingredients are
the single-particle energies Fy and vpp, and therefore, various
theoretical approaches can be classified according to them ir-
respective of whether non-relativistic or relativistic models
are used. The first type is the full Hartree-Bogoliubov (HB)
or Hartree-Fock-Bogoliubov (HFB) calculations which adopt
common effective interactions to the particle-hole (p-h) and
the particle-particle (p-p) channels. This is thought desir-
able in connection with the studies of finite-density systems
such as heavy nuclei. The second one is those which adopt
different interactions in the p-h and the p-p channels; the
single-particle states are determined by a HB or an HFB cal-
culation using an effective interaction while the pairing prop-
erties are calculated with another one. This can be regarded
as a practical alternative in nuclear structure study. The
third one is those which adopt the single-particle states ob-
tained by a Brueckner-Hartree-Fock (BHF) calculation and
the corresponding bare interaction in the gap equation. This
is regarded as the best way at tree level from a microscopic
viewpoint; the use of the G-matrices in the p-p channel is
known to give larger gaps. The polarization diagrams should
be taken into account at the next order.

In contrast to the forty-year history of the non-relativistic
study of superfluidity in infinite nuclear matter,” the rela-
tivistic one has only a short history. The first study was done
by Kucharek and Ring in 1991.%) This can be categorized
to the first type according to the classification above. They
adopted in the gap equation a one-boson exchange (OBE) in-
teraction with the coupling constants of the relativistic mean
field (RMF) model, which succeeded in reproducing the bulk
properties of the finite-density nuclear many-body systems;
both infinite matter and finite nuclei. But the resulting pair-
ing gaps were about three times larger than those accepted
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in the non-relativistic studies. After a five-year blank, some
attempts which are classified also into the first type above
were done. But their results were insufficient and further
investigations are definitely necessary. An attempt which is
classified into the second type above was done by Rummel
and Ring.* They adopted the Bonn potential as vy, whereas
the single-particle states were still those from the RMF. Their
results were very similar to those of a sophisticated approach
adopting the single-particle states obtained by a Dirac-BHF
(DBHF) calculation based on the Bonn potential, done by
Elgargy et al.,Y which is classified into the third type above.
The result that these two kinds of calculations with the same
vpp gave similar pairing gaps is quite understandable if one
roughly regards the RMF as simulating the single-particle
states of the DBHF, and therefore, indicates that Rummel
and Ring’s RMF + Bonn calculation is realistic.

Then, by modeling the pairing properties given by the RMF
+ Bonn calculation, here we construct an effective p-p chan-
nel interaction based on the OBE with the coupling constants
of the RMF and therefore keeping the spirit of the full HB
method. In other words, we aim at constructing a relativis-
tic effective p-p interaction which can play a role similar to
that of the Gogny force in the non-relativistic studies which
is thought to resemble a bare interaction® in the p-p chan-
nel. However, one thing we have to bear in mind is the dou-
ble counting problem of the short-range correlation. We will
come back to this issue later.

Our policy of constructing such an effective interaction is
to introduce a density-independent parameter A so as not
to change the Hartree part with the momentum transfer
q = 0 which determines single-particle states, respecting that
the original parameters of the RMF are density-independent.
Since the high-momentum part of the interaction in the RMF
does not have a firm experimental basis, we suppose there is
room to modify that part. Two actual ways of the modifica-
tion are examined: One is a sudden cutoff; the upper bound
of the momentum integration in the gap equation (Eq. (1))
and the effective mass equation (Eq. (7)) is cut at A while vpp
is left unchanged. The other is a smooth cutoff; a form factor
f(d?), a = p — k, containing A is applied to each nucleon-
meson vertex in vpp = ¥(p, k) while the upper bound of the
integrals is conceptually infinity, which is replaced by a num-
ber large enough, 20fm™" in the present study, numerically.



Since there is no decisive reasoning to choose a specific form,
we examine three types,
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All of them, including the sudden cutoff case, contain a pa-
rameter A.

The parameter A is determined so as to minimize the differ-
ence in the pairing properties from the results of the RMF
+ Bonn calculation. Here we adopt the Bonn-B potential
because this has a moderate property among the available
(charge-independent) versions A, B, and C. The pair wave
function

A(k)
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which measures the spatial size of the Cooper pairs. These

expressions indicate that A(kr) and ¢ carry independent in-

formation, ¢ and Z—ﬁ, respectively, in strongly-coupled sys-

tems, whereas they are intimately related to each other in

weakly-coupled ones as those often treated in condensed-

matter physics. Therefore we search for A which minimizes
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The actual numerical task is to solve the gap equation
(Eq. (1)) and the effective mass equation for the nucleon,

M =M-9z

m2 2772/ V2 + M*2

where the upper bound of the integrals is replaced by A in
the sudden cutoff case. The spin-isospin factor v = 4 and 2
indicate symmetric nuclear matter and pure neutron matter,
respectively. These equations couple to each other through
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where (w°) is the expectation value of the time component
of the vector meson field. The adopted Lagrangian is the
standard o-w model with g2 = 91.64, g2 = 136.2, m, = 550
MeV, m,, = 783 MeV, and M = 939 MeV. N in x? is taken
to be 11; kr = 0.2, 0.3, ..., 1.2fm™'. In the following, the
results for symmetric nuclear matter are presented. Those
for pure neutron matter are very similar except that A(kr)
is a little larger due to a larger effective mass M™ as shown
in Fig. 1 (a).
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Fig. 1. (a): Pairing gap at the Fermi surface, ke = 0.9fm~!, obtained by
the relativistic mean field model, as functions of the cutoff parameter
A in the numerical integrations. + =4 and 2 represent the results
for symmetric nuclear matter and pure neutron matter, respectively.
(b): Matrix element ¥(ke, k) as functions of the momentum k, with
a Fermi momentum kr = 0.9 fm 1.9

First we present the results of the sudden cutoff. Figure 1 (a)
shows that the A-dependence of A(kr) at kr = 0.9 fm~!,
where it becomes almost maximum. The dependence is
strong around 3-8fm~! and saturation is reached around
10fm~'. One can see from this it is possible to replace the
infinity in the upper bound of the momentum integrations in
the smooth cutoff cases with 20 fm™! with enough accuracy.
An important point is that the repulsive part also gives pos-
itive contributions to A(kr) because A(k) changes the sign
slightly after v(kr, k) does as seen in Fig. 4 later. Accordingly
another plateau is seen around 2fm~!. This corresponds to
the zero in vpp shown in Fig. 1(b). The repulsive part at
momenta higher than this is often abandoned but it is im-
portant to take into account this part correctly for obtaining

83



physical gaps.

Figure 2(a) shows the curvatures of x? with respect to A
both of the sudden cutoff and of the three types of form fac-
tor. Their steepness reflects the strength of the A-dependence
shown in Fig. 2(b); the dependence is rather mild in the
smooth cutoff (form factor) cases. From this we chose 3.60
fm™" for the sudden cutoff, 7.26, 10.66, and 10.98fm™" for
the three types of form factor, respectively. Cutoff parame-
ters with similar magnitudes are also suggested in the studies
of medium-energy heavy-ion collisions.”

Determination of A
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Fig. 2. (a): Curvature of x? in Eq. (6) with respect to the cutoff pa-
rameter A. (b): Large scale A-dependence of the pairing gap at the
Fermi surface, ke = 0.9 fm—!. Note that the scale of the abscissa is
different.

Figure 3 presents the results for A(kr) and & as functions
of kg, obtained by using the cutoff parameters determined
above. All the four cases examined, including the sudden
cutoff, reproduce the results from the Bonn-B potential very
well in wide and physically relevant density range, in the
sense that pairing in finite nuclei occurs near the nuclear sur-
face where the density is lower than the saturation point and
that the calculated range of kr almost corresponds to that of
the inner crust of neutron stars. This is our first conclusion.
The overall slight peak shift to higher kr in A(kr) and the
deviation in £ at the highest kr are brought about by the sys-
tematic deviation in the critical density where the gap closes,
between the calculations adopting bare v, and those adopt-
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Gap at Fermi surface
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Fig. 3. (a): Pairing gap at the Fermi surface, and (b): coherence length,
as functions of the Fermi momentum kg, obtained by adopting the
Bonn-B potential and the four kinds of effective interaction con-
structed in this study.

ing effective ones. It has not been studied enough that which
is more realistic. The deviation at the lowest kr is due to
the feature that the present model is based on the mean-field
picture for the finite-density systems. Actually, in such an
extremely dilute system, the effective-range approximation
for free scattering holds well.

Next we look into the k-dependence at kr = 0.9fm™'. Fig-
ure 4 (a) shows the pair wave function. It is evident that all
the four cases give the result identical to the Bonn-potential
case within the width of the lines. This demonstrates clearly
the effectiveness of the interactions constructed here as vpp
in the gap equation. This quantity peaks at k£ = kr as seen
from Eq. (3). The width of the peak represents the reciprocal
of the coherence length, and its asymmetric shape indicates
strongly-coupled feature. Equation (3) shows that ¢(k) is
composed of A(k) and the quasiparticle energy Eqp(k). Fig-
ure 4 (b) graphs the former. The gaps of all the five cases are
almost identical up to k ~ 2kr, and deviations are seen only
at higher momenta where Fqp(k) are large and accordingly
pairing is not important. This is not a trivial result since
the bare interaction is more repulsive than the effective ones
constructed here even at the momentum region where A(k)
are almost identical as shown in Fig. 4 (c).



k-space pair wave function
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Fig. 4. (a): Pair wave function, (b): pairing gap, and (c): matrix ele-
ment V(kg, k), as functions of the momentum k, calculated at a Fermi
momentum kg = 0.9 fm—*, by adopting the Bonn-B potential and the
four kinds of effective interaction constructed in this study.

Finally we turn to r space in order to look into the physical
contents further. Since the original form of the gap equa-
tion (Eq. (1)) can be rewritten as a convolution in the non-
relativistic limit,

Y A3k ,
Ap) = = [ oo~ 19000 5 )
this is Fourier-transformed to

A(r) = —v(r)¢(r) (1)

in 7 space. One can see from this expression that, assum-
ing A(r) is finite, ¢(r) is pushed outwards when #(r) has
a repulsive core, as the Brueckner wave functions.® This is
the reason why the use of the G-matrices in the gap equa-
tion is said to cause the double counting of the short-range
correlation. The calculated r-space pair wave functions at
krp = 0.9fm™' are shown in Fig. 5(a). Appreciable differ-
ences are seen only in the core region. The coherence length,
that is a typical spatial scale of pairing correlation, is about
6 fm at this kr as shown in Fig. 3 (b); this is almost one order
of magnitude larger than the size of the core region. There-
fore, practically we can safely use the effective interactions,

r-space pair wave function
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Fig. 5. The same as Fig. 4 but as functions of the distance r. Note that
the scale of the abscissa in (c) is different from those in (a) and (b).
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including the sudden cutoff one, constructed here for the gap
equation.

Figure 5 (b) shows the corresponding A(r). The gaps are pos-
itive at the outside of the core and negative inside in all cases.
Note here that the gap equation is invariant with respect to
the overall sign inversion and we defined as A(kr) > 0. Their
depths at the inside region reflect the heights of the repulsive
core in the Fourier transform of o(kr, k) shown in Fig. 5 (c).
Note that shown are the Fourier transforms of 4(p = kr, k)
with respect to k, not those of (¢ = |p — k|) with respect
to q. They resemble each other at k > kp, and therefore
at short distance. The patterns of oscillation also reflect the
behavior of ¥: The sudden cutoff case behaves somewhat dif-
ferently from others due to the lack of high-momentum com-
ponents. The additional staggering in the strong form factor
case stems from 9(p, k) =0 at A = |q| = |p — k]; this gives
an additional oscillatory structure in r space with a period
~7/A. In this sense, the monopole and the dipole ones are
the best whereas two others are also practically usable.

These analyses prove that some p-p interactions with strongly
different short-range behavior can give almost identical pair-
ing properties. This is another aspect of the short-range cor-
relation in the gap equation. Note that the difference at short
distance is reflected in a wide region in k space as shown in
Fig. 4(c). Therefore the character of the interactions con-
structed here based on the RMF is not only to simulate the
G-matrices in the DBHF calculations in the sense that the
q = 0 Hartree part reproduces the saturation but also to give
desired pairing properties as the Gogny force by improving
the q # 0 part.

To summarize, we have constructed relativistic effective
particle-particle channel interactions which suit the gap equa-
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tion for infinite nuclear matter based on the RMF. This
has been accomplished by introducing a density-independent
momentum-cutoff parameter to the standard RMF so as to
reproduce the pairing properties obtained by adopting the
Bonn-B potential and not to change the saturation property.
Four kinds of parameterization were examined. All of them
give practically identical results. Among them the monopole
and the dipole ones have the best properties. This investi-
gation has also clarified that some interactions with strongly
different short-range behavior can give practically identical
pairing properties. This is another aspect of the short-range
correlation in the gap equation.

Now we are ready to study the polarization effects which are
known to be important in the non-relativistic calculations be-
yond tree level. In particular, the behavior of the gap near
the saturation density is to be studied. On the other hand,
in order to extend the present study to asymmetric matter
and finite nuclei, it is important to take into account isovec-
tor mesons and the non-linear self-coupling terms which are
known to be crucial for describing finite nuclei quantitatively.
These will be studied in forthcoming papers.

References

1) T. Takatsuka and R. Tamagaki: Prog. Theor. Phys. Suppl.
112, 27 (1993).

2) H. Kucharek and P. Ring: Z. Phys. A 339, 23 (1991).

3) A.Rummel and P. Ring: preprint (1996); P. Ring: Prog. Part.
Nucl. Phys. 37, 193 (1996).

4) . Elgargy et al.: Phys. Rev. Lett. 77, 1428 (1996).

5) G. F. Bertsch and H. Esbensen: Ann. Phys. 209, 327 (1991).

6) T. Tanigawa and M. Matsuzaki: Prog. Theor. Phys. 102, 897
(1999).

7) P. K. Sahu et al.: Nucl. Phys. A 640, 493 (1998).

8) M. Baldo et al.: Nucl. Phys. A 515, 409 (1990); @. Elgargy
et al.: Nucl. Phys. A 604, 466 (1996).



