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Constructing Effective Pair Wave Function
from Relativistic Mean Field Theory with a Cutoff
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We propose a simple method to reproduce the 1S0 pairing properties of nuclear matter,
which are obtained using a sophisticated model, by introducing a density-independent cutoff
into the relativistic mean field model. This can be applied successfully to the physically
relevant density range.

The 1S0 pairing gap ∆ in infinite nuclear matter is obtained by solving the gap
equation,

∆(p) = − 1
8π2

∫ ∞

0
v̄(p, k)

∆(k)√
(Ek − EkF

)2 + ∆2(k)
k2dk , (1)

with v̄ indicating the antisymmetrized matrix elements of the particle-particle in-
teraction vpp. One can see from this equation that the physical ingredients are the
single-particle energies Ek and vpp. In sophisticated microscopic approaches, the
Ek are obtained from Brueckner-Hartree-Fock calculations with bare N -N inter-
actions, which are fitted to the phase shifts of the N -N scatterings in free space.
As for vpp, most calculations employ bare interactions, while some others employ
medium-renormalized interactions, such as the G matrices. Approaches involving
calculations of the former type are based on the view that the gap equation itself
possesses a mechanism to evade strong short-range repulsions, and, accordingly, use
of medium-renormalized interactions results in a double counting. 1) - 4) The forty-
year history of non-relativistic studies of the pairing problem 5) has shown that all
the bare N -N interactions that are fitted to the phase shifts give almost identical
pairing gaps for the 1S0 channel. This is because a separable approximation 6) can
be made for the S wave channels in which a virtual (1S0) or real (3S1) bound-state
pole exists in the T matrices, 7) and this leads to an approximate relation between
the pairing gap and the phase shift applicable to the low-density region. 8) Medium
renormalizations are understood to cause the gap to become larger because they
weaken the short-range repulsion. Irrespective of whether the medium renormaliza-
tions are included, the particle-hole polarizations should be considered in the next
order according to a diagrammatic analysis of the gap equation, 9) and it is said
that they act to reduce the gaps. 10) - 12)
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Another approach to the pairing in nuclear matter is based on the effective inter-
actions that are constructed from the beginning to describe finite-density systems.
An example is the Gogny force, 13) which describes the bulk and the pairing proper-
ties of infinite matter quite well without any cutoffs, 14) and another is represented
by various versions of the Skyrme forces, which require cutoffs for the description
of the pairing. 15) From the viewpoint of the double counting of the short-range
correlation mentioned above, however, the adequateness of the use of effective forces
in the particle-particle (p-p) channel is not evident. 4) Although this is still an open
problem, the Gogny force is said to act as a bare force in the p-p channel. 16)

Similarly to the studies discussed above, the first relativistic study of the pair-
ing in nuclear matter was carried out in 1991 17) by adopting a phenomenological
interaction, the relativistic mean field (RMF) model, which succeeded in reproduc-
ing the bulk properties of the finite-density nuclear many-body systems. But the
resulting pairing gaps were about three times larger than those accepted as standard
in the non-relativistic studies. After a five-year blank, various attempts to improve
this result have begun. These attempts can be classified into two groups: The first
one employs vpp which are consistent with the particle-hole (p-h) channel, i.e. the
single-particle states, 18) - 21) and the second one employs vpp which are not explicitly
consistent with the p-h channel. 22), 23) In addition to these works which are based
on the single-particle states of the RMF model, there exists another 24) which is
based on the single-particle states obtained through the Dirac-Brueckner-Hartree-
Fock (DBHF) calculation. 25) We refer to this as the third type hereafter. The result
that the calculations of the second and the third types give almost identical pair-
ing gaps indicates that the pairing properties are determined predominantly by the
choice of the p-p channel interaction, irrespective of the details of the single-particle
states. In addition, the feature that the obtained gaps are very similar to those
given by the non-relativistic calculations adopting bare interactions in the p-p chan-
nel supports this further. As for the first type, a more elaborate calculation, such as
one including the N -N̄ polarizations, would be necessary. 20) As a complement to
this kind of study, however, simpler methods suitable for realistic applications are
also desirable. Examples for which realistic pairing strengths are indispensable are
studies of the crust matter in neutron stars and finite open-shell nuclei. In particu-
lar, aside from the practical successes of the “relativistic” Hartree-Fock-Bogoliubov
(HFB) calculations implemented by a non-relativistic force, 26) tractable relativistic
vpp derived from the Lagrangian of the RMF model are needed to keep the concept
of the HFB calculation.

The purpose of this paper is to construct a relativistic effective force which can
be used also in the p-p channel as the Gogny force in the non-relativistic calculation.
Therefore, first of all, we consider the difference between an effective force and a bare
force. In Fig. 1(a) the one-boson exchange vpp with the coupling constants of the
σ-ω model, which is the simplest version of the RMF model, is shown in comparison
with the Bonn-B potential, 25) which is an example of the relativistic bare N -N
interactions. Their shapes differ greatly. This is because the former is constructed
so as to reproduce the saturation property without the short-range correlations, while
the latter reproduces it in the DBHF calculation which implies them. This leads to
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the characteristic feature of the former that both the small-momentum negative off-
diagonal matrix elements and the large-momentum positive ones are stronger than
those for the latter. Both of them enhance the pairing gap, as discussed below.

The momentum integration in Eq. (1) should run to infinity when bare N -N
interactions are adopted. In contrast, there is room to introduce a momentum cutoff
when we adopt some phenomenological interactions, which are meaningful only for
small momenta, as the Skyrme force. Evidently the assumption of the RMF model
that the nucleon is a point particle cannot be justified at sufficiently large momenta.
Combining this fact with the strong cutoff dependence in the momentum region
3 – 8 fm−1 in Fig. 1(b) suggests the possibility to choose a proper cutoff which de-
scribes the pairing gap quantitatively. Note that the necessity of cutting off the large
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Fig. 1. (a) Matrix element v̄pp(k, kF) as func-

tions of the momentum k, with the Fermi

momentum kF = 0.9 fm−1. The solid and

dashed curves indicate the results obtained

by the relativistic mean field model and the

Bonn-B potential, respectively. (b) Pairing

gap at the Fermi surface, kF = 0.9 fm−1,

obtained from the relativistic mean field

model, as functions of the cutoff parame-

ter in the numerical integrations. The solid

and dotted curves indicate the results for

symmetric nuclear matter and pure neu-

tron matter, respectively.

-momentum repulsion in the vpp derived
from the RMF model has also been
suggested in studies of medium-energy
heavy-ion collisions. 27), 28) This is in-
teresting in the respect that two dif-
ferent phenomena, which involve large-
momentum transfers, suggest similar
cutoffs in the RMF-based p-p interac-
tion.

In order to describe superfluidity
quantitatively, not only the pair wave
function

φ(k) =
1
2

∆(k)√
(Ek − EkF

)2 + ∆2(k)
,

(2)
which determines the gap at the Fermi
surface

∆(kF) = − 1
4π2

∫ ∞

0
v̄(kF, k)φ(k)k2dk ,

(3)
but also its derivative, which determines
the coherence length 29)

ξ =

(∫∞
0 |dφ

dk |2k2dk∫∞
0 |φ|2k2dk

) 1
2

, (4)

should be reproduced. The latter quan-
tity measures the spatial size of the
Cooper pair. In weakly-coupled sys-
tems, in which ∆(kF) is determined by
the diagonal matrix element v(kF, kF)
only and ξ � d (where d is the inter-
particle distance), ∆(kF) and ξ are inti-
mately related to each other. But this
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does not hold for nuclear many-body systems, and the off-diagonal matrix ele-
ments v(kF, k) play important roles. Therefore here we attempt to find a density-
independent cutoff Λc for the upper bound of the integrals in Eqs. (3) and (4) so as
to reproduce, in a wide density range, ∆(kF) and ξ obtained by adopting the Bonn-
B potential. In other words, we attempt to introduce an extra parameter into the
σ-ω model to fit the pairing properties described by a sophisticated model without
changing the bulk properties.

The outline of the numerical calculations is as follows: We start from the σ-ω
model with the no-sea approximation, as we confirmed in Ref. 21) that the Dirac sea
effects were negligible. The parameters used are M = 939 MeV, mσ = 550 MeV,
mω = 783 MeV, g2

σ = 91.64, and g2
ω = 136.2. 30) The calculations were done for

symmetric nuclear matter (γ = 4) and pure neutron matter (γ = 2). The pairing
gap at each momentum is calculated by the gap equation (1) with Λc and the effective
mass equation

M∗ = M − g2
σ

m2
σ

γ

2π2

∫ Λc

0

M∗
√

k2 + M∗ 2
v2
kk

2dk . (5)

Equations (1) and (5) couple to each other through

v2
k =

1
2


1− Ek − EkF√

(Ek − EkF
)2 + ∆2(k)


 ,

Ek =
√

k2 + M∗ 2 + gω〈ω0〉 . (6)

We search for the value of Λc that minimizes

χ2 =
1
2N

∑
kF

{(
∆(kF)RMF − ∆(kF)Bonn

∆(kF)Bonn

)2

+
(

ξRMF − ξBonn

ξBonn

)2
}

. (7)

Here we assume equal weights for ∆(kF) and ξ. The single-particle states are deter-
mined by the σ-ω model in both the “RMF” and the “Bonn” cases, as in Refs. 22)
and 23). The summation with respect to kF is taken as kF = 0.2, 0.3, · · ·, 1.2 fm−1,
i.e. N = 11, since we do not anticipate that the present method is applicable to the
kF ∼ 0 case, as discussed later.

We found that Λc = 3.60 fm−1 minimizes χ2 for γ = 4. This value indicates that
not only the small-momentum part, where v(kF, k) < 0 and ∆(k) > 0, but also the
large-momentum part, where v(kF, k) > 0 and ∆(k) < 0, contribute (see Fig. 1(a))
as pointed out in Refs. 22) and 23). The cutoff smaller than 2 fm−1 determined in
Ref. 19) leads to cutting the “repulsive” part completely, and this corresponds to
choosing the plateau around 2 fm−1 in Fig. 1(b), as proposed in Ref. 15) in the case
of the Skyrme force. The present result does not agree with these previous ones.
Reference 18) reports a result different from ours. As discussed in Ref. 21), there are
two reasons for this difference. One reason is that they adopted coupling constants
which reproduced the saturation in the Hartree-Fock approximation, not the Hartree
(so-called MFT) approximation. This leads to larger pairing gaps. 31) The other
reason is the difference in the evaluation of the Dirac sea effects.
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Fig. 2. Pairing gap at the Fermi surface (a),

and coherence length (b) as functions of the

Fermi momentum, calculated for symmet-

ric nuclear matter. The solid curves and

diamonds indicate the results obtained us-

ing the relativistic mean field model with a

momentum cutoff Λc = 3.60 fm−1 and the

Bonn-B potential, respectively.

Figures 2(a) and (b) show how well
the σ-ω model with Λc chosen above re-
produces ∆(kF) and ξ, respectively, ob-
tained with the Bonn-B potential for
symmetric nuclear matter. One can see
some deviations between the two models
both near kF ∼ 0.2 fm−1 and kF ∼ 1.2
fm−1. As for the former, it is quite rea-
sonable that the present model based on
the mean field picture for finite-density
systems does not give a good fit. Ac-
tually, in such an extremely dilute sys-
tem, the effective-range approximation
for the free scattering is quite good. 8) As
for the latter, the deviation results from
the fact that the superfluid phase in the
RMF model, as well as in the Gogny
force case, 22) disappears in a nearly Λc-
independent manner at somewhat larger
kF than in the Bonn potential case. This
at the same time causes the overall peak
shift of ∆(kF) to larger kF and makes
ξ at large kF small. We should note,
however, that the critical density or kF,
where the pairing gap disappears, has
not been fully discussed yet. The result
for pure neutron matter is very similar,
except that ∆(kF) is somewhat larger
as seen in Fig. 1(b), and the superfluid
phase survives up to somewhat larger kF, due to larger values of M∗ than in the
symmetric matter case. Consequently, the present method gives a good fit still for
kF ∼ 1.2 fm−1. The density of neutron matter in the inner crust of neutron stars
corresponds to 0.2 fm−1 <∼ kF

<∼ 1.3 fm−1. 5) Therefore the present simple method
covers the greater part of this range. In finite nuclei, pairing occurs near the nuclear
surface, where the density is lower than the saturation point. The present method
gives a good description of this region.

To summarize, we proposed a method to reproduce the 1S0 pairing properties
of infinite nuclear matter, obtained using a sophisticated DBHF plus a full-range
gap equation adopting the Bonn potential, by introducing a momentum cutoff into
the gap equation with the relativistic mean field model. This method was shown
to be applicable in a wide and physically relevant density range. This points the
way to consistent (i.e., using the same interaction in the p-h and the p-p channels)
relativistic HFB studies of neutron stars and finite nuclei. Finally, we remark that
the cutoff we introduced is density-independent, since our approach is based on
the density-independent — except the dependence through M∗ — RMF interaction
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which was determined at the saturation point. This deserves further investigation.
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8) Ø. Elgarøy and M. Hjorth-Jensen, Phys. Rev. C57 (1998), 1174.
9) A. B. Migdal, Sov. Phys.-JETP 13 (1961), 478.

10) J. M. C. Chen, J. W. Clark, E. Krotscheck and R. A. Smith, Nucl. Phys. A451 (1986),
509.

11) J. Wambach, T. L. Ainsworth and D. Pines, Nucl. Phys. A555 (1993), 128.
12) H.-J. Schulze, J. Cugnon, A. Lejeune, M. Baldo and U. Lombardo, Phys. Lett. B375

(1996), 1.
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