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General relativistic mean field theory for rotating nuclei
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We formulate a general relativistic mean field theory for rotating nuclei starting from the special relativistic
s-v model Lagrangian. The tetrad formalism is adopted to generalize the model to the accelerated frame.
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Quantum hadrodynamics~QHD! is a quantum field theory
which treats nucleons and mesons as elementary degre
freedom. The origin of relativistic nuclear models can
traced back to the work of Duerr@1# who reformulated a
nonrelativistic field theoretical nuclear model of Johnson a
Teller @2#. The present form of QHD was established
Chin and Walecka who reproduced the saturation propert
the nuclear matter within the mean field approximation in
70’s @3#. Since then it has been enjoying its success in
counting for various nuclear phenomena@4#. Presently it is
appreciated as a reliable way, alternative to traditional n
relativistic nuclear theories such as the Skyrme-Hartree-F
calculation, of describing not only the ground state proper
of finite ~spherical@5#, deformed@6#, and superdeformed@7#!
nuclei, but also the scattering observables@8#. Recently it has
also been applied extensively to exotic nuclei@9#. Incorpo-
rating the polarization of the Fermi and Dirac sea, which
neglected in the mean field approximation, on the other ha
QHD can be an effective theory for the hadron propert
such as masses of vector mesons in finite density nuc
medium @10# to which lattice QCD calculations have no
been available.

Two directions of extensions of the relativistic mean fie
theory to the description of the excited states have been d
so far. One is to the giant resonances@11# and the other is to
the yrast states of rotating nuclei@12,13#. In @13#, the Münich
group first applied this model to the yrast states of20Ne and
got similar results to the Skyrme-Hartree-Fock calculati
In some following papers@14#, they showed that this mode
could also reproduce the moments of inertia of medi
heavy and heavy superdeformed nuclei in which effects
the pairing correlation was assumed to be not important. T
model was extended to the nonuniform three-dimensio
rotation and a method of its quantization was also discus
@15#. From the theoretical point of view, however, Koepf a
Ring’s formulation based on the Lorentz transformation
not adequate because the rotating frame is an accele
one, and the coordinate transformation from the laborat
frame to the rotating one is not a Lorentz, but a gene
coordinate transformation. The main reason why we ad
QHD, a special relativistic model, is to respect the Lore
covariance even if velocities involved are not so large. P
allel to this, we should adopt general relativistic models
the phenomena for which general coordinate transformat
are necessary even if the curvature of the space-time is z
Therefore, in this Rapid Communication, we develop a g
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eral relativistic mean field theory for rotating nuclei b
adopting the tetrad formalism@16#.

The crucial point is the transformation property of th
nucleon field under the coordinate transformation

xa5S t

xD→ x̃m5S t̃

x̃
D 5S 1 0T

0 Rx~ t !D S t

xD , ~1!

Rx~ t !5S 1 0 0

0 cosVt sinVt

0 2sinVt cosVt
D , ~2!

wherexa stands for the laboratory frame, whilex̃m a frame
uniformly rotating around thex̃5x axis with an angular ve-
locity V. Koepf and Ring adopted

c~x!→c̃~ x̃ !5eiVtSxc~x!, Sx5
1

4
@g2,g3#, ~3!

which is applicable only to the constant angle shift. But o
viously this is not for the present case. Therefore we hav
adopt

c~x!→c̃~ x̃ !5c~x!, ~38!

as known in the quantum theory of gravity@16#; the fermion
field transforms as a scalar under the general coordin
transformation. The tetrad formalism gives us how to tr
the spinor field in general relativity. In the following, w
develop our formalism.

First we consider a noninertial frame~either curved or
flat! represented by a metric tensorgmn( x̃ ). The principle of
equivalence allows us to construct a set of coordinatesjX

a( x̃ )
that are locally inertial atx̃m5Xm. Then the metric tensors o
the noninertial and the inertial frames are related as

gmn~ x̃ !5Vm
a~ x̃ !Vn

b~ x̃ !hab , ~4!

here a tetrad is defined by

Vm
a~X!5S ]jX

a~ x̃ !

] x̃m D
x̃5X

. ~5!
R2934 © 1997 The American Physical Society
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Labelsa,b,••• refer to the inertial frames, whilem,n,••• to
the noninertial ones. This quantity, the tetrad, transforms
vector not only under the general coordinate transformat

Vm
a~ x̃ !→V8m

a~ x̃ 8!5
] x̃ n

] x̃ 8m
Vn

a~ x̃ !, ~6!

but also under the local Lorentz transformation,

Vm
a~X!→V8m

a~X!5Lb
a~X!Vm

b~X!. ~7!

The latter which leaves Eq.~4! invariant allows us to choos
various forms forVm

a . We will make use of this property
later. The main advantage of introducing the tetrad is t
any tensorsBmn•••( x̃ ) with respect to the general coordina
transformation can be converted to scalars with respect t
which is at the same time tensors with respect to the lo
Lorentz transformation,

Bmn•••~ x̃ !⇒* Bab•••~ x̃ !5Vm
a~ x̃ !Vn

b~ x̃ !•••Bmn•••~ x̃ !
~8!

: general coordinate scalar and Lorentz tensor,

by contracting with the tetrad. This implies that this contra
tion is not necessary for the general coordinate scalar q
tities,

f~ x̃ !⇒* f~ x̃ !5f~ x̃ ! ~9!

: general coordinate scalar and Lorentz scalar,

c~ x̃ !⇒* c~ x̃ !5c~ x̃ ! ~10!

: general coordinate scalar and Lorentz spinor.

The covariant derivative with respect to the local Loren
transformation of the general coordinate sca
* w(5* c,* f,* Aa,•••) is given by@16#

¹̃a * w5Va
m¹̃m * w[Va

m~ ]̃ m1Gm!* w, ~11!

with the connection

Gm~ x̃ !5 1
2 sabVa

n~ x̃ !Vbn;m~ x̃ !, ~12!

wheresab is the generator of the Lorentz group, the symb
;m denotes the well-known covariant derivative with resp
to the general coordinate transformation.

Collecting all the ingredients given above, we can gen
alize the Lagrangian to the noninertial frame with the follo
ing prescriptions:

~1! Write the Lagrangian in the Minkowski space-time.
~2! Contract all the tensors with the tetrad.
~3! Replace all the derivatives with the covariant deriv

tives.
~4! Multiply A2g to cast the resulting quantity into a scal

density with respect to the general coordinate trans
mation. Here

g5det~gmn!, A2g5det~Vm
a !. ~13!

The results for thes-v model,
a
n,

t

it,
al

-
n-

r

l
t

r-
-

-

r-

L5LN1Ls1Lv1Lint , ~14!

LN5 c̄ ~ iga]a2M !c, ~15!

Ls5 1
2 ~]as!~]as!2 1

2 ms
2s2, ~16!

Lv52 1
4 FabFab1 1

2 mv
2 vava, ~17!

Lint5gsc̄cs2gvc̄gacva , ~18!

are

LN→A2g@ c̄~ x̃ !$ i g̃ m~ x̃ !@ ]̃ m1Gm~ x̃ !#2M %c~ x̃ !#,
~19!

with Eq. ~12!,

Ls→A2g[ 1
2 Va

m~ x̃ !@¹̃ms~ x̃ !#

3Vn
a~ x̃ !@¹̃ns~ x̃ !#2 1

2 ms
2s2~ x̃ !]

5A2g[ 1
2 @ ]̃ ms~ x̃ !#@ ]̃ ms~ x̃ !#

2 1
2 ms

2s2~ x̃ !], ~20!

owing to the fact that the covariant derivative coincides w
the ordinary one for the scalar field,

Lv→A2g@2 1
4 $Va

m~ x̃ !¹̃m@Vb
n ~ x̃ !vn~ x̃ !#%

2Vb
m~ x̃ !¹̃m@Va

n ~ x̃ !vn~ x̃ !#

3Vm
a~ x̃ !¹̃m@Vn

b~ x̃ !vn~ x̃ !#2Vm
b~ x̃ !¹̃m@Vn

a~ x̃ !vn~ x̃ !#

1 1
2 mv

2 Va
m~ x̃ !vm~ x̃ !Vn

a~ x̃ !vn~ x̃ !#

5A2g@2 1
4 Fmn~ x̃ !Fmn~ x̃ !1 1

2 mv
2 vm~ x̃ !vm~ x̃ !#, ~21!

here

Fmn~ x̃ !5vn;m~ x̃ !2vm;n~ x̃ !5 ]̃ mvn~ x̃ !2 ]̃ nvm~ x̃ !,
~22!

and

Lint→A2g@gsc̄~ x̃ !c~ x̃ !s~ x̃ !

2gvc̄~ x̃ ! g̃m~ x̃ !c~ x̃ !vm~ x̃ !#. ~23!

In Eqs.~19! and~23!, the generalizedg matrices are defined
as

g̃ m~ x̃ !5gaVa
m~ x̃ !, ~24!

and they satisfy

$ g̃m~ x̃ !, g̃ n~ x̃ !%52gmn~ x̃ !. ~25!

The variational principle applied to the above generaliz
Lagrangian for the noninertial frame gives the equations
motion:



a
s

xi-
f

ing

e

i-

for-
di-
y

ntz

ent.
pt

,
est
ial

RAPID COMMUNICATIONS

R2936 56HIDEKI MADOKORO AND MASAYUKI MATSUZAKI
$ i g̃ m~ x̃ !@ ]̃ m1Gm~ x̃ !#2M1gss~ x̃ !

2gvg̃m~ x̃ !vm~ x̃ !} c~ x̃ !50, ~26!

]̃ m@ ]̃ ms~ x̃ !#1ms
2s~ x̃ !5gsc̄~ x̃ !c~ x̃ !, ~27!

and

F ;m
mn~ x̃ !1mvvn~ x̃ !5gvc̄~ x̃ ! g̃ n~ x̃ !c~ x̃ !, ~28!

for the nucleon,s meson, andv meson, respectively.
Now we choose a specific flat but noninertial frame, th

is a uniformly rotating frame given by the coordinate tran
formation ~1!. The metric tensor in this case is

gmn~ x̃ !5
]xa

] x̃m

]xb

] x̃ n
hab

5S 12V2~ ỹ21 z̃2! 0 V z̃ 2V ỹ

0 21 0 0

V z̃ 0 21 0

2V ỹ 0 0 21

D .

~29!

Looking at Eqs.~4!, ~5!, and~29!, the simplest choice of the
tetrad is

Vm
a~ x̃ !5

]xa

] x̃m

5S 1 0T

0

2V~ ỹsinV t̃ 1 z̃cosV t̃ ! Rx
T~ t̃ !

V~ ỹcosV t̃ 2 z̃sinV t̃ !

D ,

~30!

i.e., the choice of the inertial coordinate

jX
a~ x̃ !5xa. ~31!

We call this thefundamental choice. This choice results in

Gm~ x̃ !50, ~32!

for the spinor field, and accordingly

H @Rx~ t̃ !a#•S 1

i
“̃2gvṽ~ x̃ ! D1b@M2gss~ x̃ !#

1gvṽ0~ x̃ !2V L̃ xJ c i~ x̃ !5 i ]̃ 0c i~ x̃ !, ~33!

~ ]̃ 0
22“̃

21ms
22V2L̃ x

2!s~ x̃ !5gsrs~ x̃ !, ~34!

~ ]̃ 0
22“̃

21mv
2 2V2L̃ x

2!ṽ0~ x̃ !5gv r̃ v~ x̃ !, ~35!

@ ]̃ 0
22“̃

21mv
2 2V2~ L̃ x1Sx!

2#v~ x̃ !5gv ̃ v~ x̃ !, ~36!
t
-

for the equations of motion within the mean field appro
mation where the nucleon fieldc is expanded in terms o
single particle statesc is. Here

rs~ x̃ !5(
i

occ

c̄ i~ x̃ !c i~ x̃ !, ~37!

rv~ x̃ !5(
i

occ

c i
†~ x̃ !c i~ x̃ !, ~38!

jv~ x̃ !5(
i

occ

c i
†~ x̃ !ac i~ x̃ !, ~39!

and a similar redefinition of the vector quantities accord
to Koepf and Ring,

ṽ05v0, ṽ5v2~V3 x̃!v0, ~40a!

r̃ v5rv , ̃ v5Rx~ t̃ !jv2~V3 x̃!rv , ~40b!

was done. Note thatSx is the ordinary spin operator for th
spin51 field,

Sx5S 0 0 0

0 0 2 i

0 i 0
D . ~41!

Obviously Eq.~33! is not stationary in the sense of the ord
nary cranking model becauseRx( t̃ ) in the first term is time
dependent.

Therefore another choice of the tetrad is desirable to
mulate a stationary mean field theory parallel to the tra
tional non-relativistic cranking model. This is possible b
making use of the degrees of freedom of the local Lore
transformation~7!. This is due to the fact thatVm

a has 16
components whereas only 10 components are independ
Utilizing this freedom of choosing 6 components, we ado
another form for the tetrad,

Vm
a~ x̃ !5S 1 0 0 0

0 1 0 0

2V z̃ 0 1 0

V ỹ 0 0 1

D , ~308!

which is called thecanonical choice@17#. In the present case
this corresponds to choosing the ‘‘instantaneously r
frame’’ with respect to the rotating one as the locally inert
frame. This choice results in

Gm~ x̃ !5S 2 iVSx

0 D , ~328!

for the spinor field, and accordingly
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H a•S 1

i
“̃2gvṽ~ x̃ ! D1b@M2gss~ x̃ !#

1gvṽ0~ x̃ !2V~ L̃ x1Sx!J c i~ x̃ !5 i ]̃ 0c i~ x̃ !,

~338!

~ ]̃ 0
22“̃

21ms
22V2L̃ x

2!s~ x̃ !5gsrs~ x̃ !, ~348!

~ ]̃ 0
22“̃

21mv
2 2V2L̃ x

2!ṽ0~ x̃ !5gv r̃ v~ x̃ !, ~358!

@ ]̃ 0
22“̃

21mv
2 2V2~ L̃ x1Sx!

2#ṽ~ x̃ !5gv ̃ v~ x̃ !,
~368!

for the equations of motion. Equation~40b! is replaced by

r̃ v5rv , ̃ v5 jv2~V3 x̃!rv , ~40b8!

while Eq. ~40a! is independent of the choice of the tetra
Assuming the time dependence

c i~ t̃ , x̃!5c i~ x̃!e2 i ẽ i t̃ , ~42!

where ẽi is the single-particle routhian, and the usu
t̃ -independence of the meson mean fields, we come to
desired stationary theory. This coincides with Koepf a
Ring’s. The total energy in the laboratory frame,*d3xT00,
can be calculated from the energy-momentum tensor in
rotating frame,T̃mn( x̃ ), given by the tetrad formalism@16#.
Again the result coincides with theirs.

The reason why they obtained the correct express
starting from Eq.~3! is clear. Since they defined the tran
.

ys
.

l
he
d

e

s

formation property of theg matrices such thatc̄gac trans-
forms as a~Lorentz! vector, their transformedg matrices
absorbed the inadequateness of the transformation prop
of the fermion field. In addition, their transformation~3! for
the spinor and that for theg matrices can be regarded a
simulating the local Lorentz transformation from the fund
mental to the canonical tetrad. These implications are cl
fied by constructing a correct general relativistic formulatio

To summarize, we have formulated a general relativis
mean field theory for rotating nuclei adopting the tetrad f
malism. We applied this formulation to thes-v model
which has been known to give good descriptions of vario
nuclear phenomena. We needed to adopt the so-called
nonical choice of the tetrad to obtain a stationary equation
motion in the sense of the ordinary nonrelativistic cranki
model. The results are the same as those of Koepf and R
who started from a special relativistic transformation pro
erty; their inadequateness was absorbed by their transfor
g matrices@13#.

A possible way to go beyond the mean field approxim
tion is the method of Kaneko, Nakano and one of the pres
authors@15#, but any numerical application along this wa
has not been done. A systematic numerical calculation of
yrast states of not only stable, but also unstable nuclei ba
on the present mean field theory is under progress and
be published separately.
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