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General relativistic mean field theory for rotating nuclei
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We formulate a general relativistic mean field theory for rotating nuclei starting from the special relativistic
o-o model Lagrangian. The tetrad formalism is adopted to generalize the model to the accelerated frame.
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Quantum hadrodynamid¢QHD) is a quantum field theory eral relativistic mean field theory for rotating nuclei by
which treats nucleons and mesons as elementary degreesaifopting the tetrad formalisifi16].
freedom. The origin of relativistic nuclear models can be The crucial point is the transformation property of the
traced back to the work of Duefrl] who reformulated a nhucleon field under the coordinate transformation
nonrelativistic field theoretical nuclear model of Johnson and

Teller [2]. The present form of QHD was established by t T 1 0 t

Chin and Walecka who reproduced the saturation property of X4= x —Xt=| _|= 0 Rt/ x]’ 1)
the nuclear matter within the mean field approximation in the X X

70's [3]. Since then it has been enjoying its success in ac-

counting for various nuclear phenomejdd. Presently it is 1 0 0

appreciated as a reliable way, alternative to traditional non- R(t)=| 0 cofdt sinQt |, )
relativistic nuclear theories such as the Skyrme-Hartree-Fock )

calculation, of describing not only the ground state properties 0 —sinQt codlt

of finite (spherical5], deformed 6], and superdeformgd])

nuclei, but also the scattering observaljigls Recently it has ~ Wherex® stands for the laboratory frame, whil* a frame
also been app“ed extensive|y to exotic nud@]_ |ncorpo- Uniformly rotating around th& =x axis with an angular ve-
rating the polarization of the Fermi and Dirac sea, which islocity (2. Koepf and Ring adopted

neglected in the mean field approximation, on the other hand,

QHD can be an effective theory for the hadron properties ~ o\ _ A0, 1,

such as masses of vector mesons in finite density nuclear Y(X)—p(X)=e ¥(x), EX_Z[V et )
medium [10] to which lattice QCD calculations have not

been available. which is applicable only to the constant angle shift. But ob-

Two directions of extensions of the relativistic mean field Vious|y this is not for the present case. Therefore we have to
theory to the description of the excited states have been dongjopt

so far. One is to the giant resonan¢&4] and the other is to

the yrast states of rotating nuc[di2,13. In [13], the Minich

group first applied this model to the yrast stateS®e and

got similar results to the Skyrme-Hartree-Fock calculation.as known in the quantum theory of gravig6]; the fermion

In some following paper§l4], they showed that this model field t f q | y d 9 h ’ | dinat

could also reproduce the moments of inertia of mediu I€ld fransiorms as a scalar under th€ general coordinate

heavy and heavy superdeformed nuclei in which effects o ransfo_rmatlpn. 'I_'he tetrad formz_ih_sm gIves us hOV_V to treat
VY @ Y sup . .the spinor field in general relativity. In the following, we

the pairing correlation was assumed to be not important. Thi Ip f I'g y 9

model was extended to the nonuniform three-dimensiona er otp our ormlg ISm. inertial f ith q

rotation and a method of its quantization was also discusseﬁi i Irst we C?nd5|b era ”tOT“r;er a rja-n(e_ll_h er c_:ur\_/el ofr

[15]. From the theoretical point of view, however, Koepf and a).represen ed by a metric tensgy,(X). The princip Ei,o

Ring’s formulation based on the Lorentz transformation isequalence allpws us to construct a set of coo_rdlnaiex)

not adequate because the rotating frame is an acceleratdift are locally inertial &k*=X*. Then the metric tensors of

one, and the coordinate transformation from the laboratory€ Noninertial and the inertial frames are related as

frame to the rotating one is not a Lorentz, but a general _ _ _

coordinate transformation. The main reason why we adopt 9,(X) =V (O VE(R) 7, (4)

QHD, a special relativistic model, is to respect the Lorentz

covariance even if velocities involved are not so large. Parhere a tetrad is defined by

allel to this, we should adopt general relativistic models for

P(X)— P(X) = (), (3)

the phenomena for which general coordinate transformations IEL(X)
are necessary even if the curvature of the space-time is zero. Va(X)= Py : )
Therefore, in this Rapid Communication, we develop a gen- X X=X
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Labelsa,B,- - - refer to the inertial frames, whilg,v,- - - to L=LN+ Lo+ Lo+ Lint (14)
the noninertial ones. This quantity, the tetrad, transforms as a
vector not only under the general coordinate transformation, Ln= (i y%9,— M), (15)
VE(R) =V (X)) = ——Vi(X), (6) L,=3(3,0)(9"0)— 3 m2o?, (16)
IX'H
_ 1 1% 1 2 a
but also under the local Lorentz transformation, L,==iFougF P+ s mo,0% (17)
V()= V()= AGOOVE(X). @) Lin=9o P ho—gu by Yo, (18

The latter which leaves E@4) invariant allows us to choose zre

various forms forVy . We will make use of this property

later. The main advantage of introducing the tetrad is that £ — \/—_g[ﬁi(’){i;”(i‘)[?iwt I (X)]1-M}(X)],
any tensor8#” " (X) with respect to the general coordinate (19
transformation can be converted to scalars with respect to it,

which is at the same time tensors with respect to the locawith Eq. (12),

Lorentz transformation,

L,—=g[3VAR)V ,0(%
B;LV(?):*Baﬁ(y)zvz(y)vf(y)B'u,,(.-).(..) [ \/_g[Z i(x)[ /.LO-(X)]
(8) X VAR [V o (X)]— s m2o?(X)]

: general coordinate scalar and Lorentz tensor, -~
=V=0[z[d,0(R)[I*a(X)]

by contracting with the tetrad. This implies that this contrac-

tion is not necessary for the general coordinate scalar quan- — s mea¥(X)], (20
tities,
owing to the fact that the covariant derivative coincides with
H(X)="* d(X)= ¢(X) (9)  the ordinary one for the scalar field,
: general coordinate scalar and Lorentz scalar, L,—\—09[— %{Vg(y)'ﬁ#[vg(y)wv(y)]}
()= P(X) = p(X) (10) —Vﬁ(’%)%[VZ(Y)wV(Y)]
: general coordinate scalar and Lorentz spinor. X V() VA VE(R) 0" (%) ] VAR) VA VE(R) 0"(X)]
The covariant derivative with respect to the local Lorentz + %mivg(i)w“(’i)vﬁ(?)w”(’%)]
transformation of the general coordinate scalar
*o(=*,* ¢, ¥ A%, - - ) is given by[16] =V=0[— F L (OF*(X)+ 3 mf)wﬂ(i)w”(Y)], (21
V. * o=V, *e=VHT,+T )* o, (1)  here
with the connection F (X)) =0,,,(X) = w,.,(%) :'ﬁﬂwv(')‘() _'51}&,#('5(),(22)
[,(X)=30V(X)Vg, (%), (12
] and
whereo®? is the generator of the Lorentz group, the symbol
; u denotes the well—known covariant Qenvatlve with respect Lin— \/—_g[ggw('i) Y(X) (%)
to the general coordinate transformation.
Collecting all the ingredients given above, we can gener- _waY)';,#(y),/,(y)w#(y)]_ (23)
alize the Lagrangian to the noninertial frame with the follow-
ing prescriptions: In Egs.(19) and(23), the generalized matrices are defined
(1) Write the Lagrangian in the Minkowski space-time. as
(2) Contract all the tensors with the tetrad. ~ e oy
(3) Replace all the derivatives with the covariant deriva- YHR) =7V (%), (24)
tives. .
. . L d th t
(4) Multiply —g to cast the resulting quantity into a scalar and they satisfy
density with respect to the general coordinate transfor- {7“(’)?),?(7)}:29“%'@. (25)

mation. Here

N The variational principle applied to the above generalized
g=detg,,), V—g=de(V,). (13)  Lagrangian for the noninertial frame gives the equations of
The results for ther-w model, motion:
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{i?’“(')?)[né +T ,(%)]-M+g,o(X) for the equations of motion within the mean field approxi-
pooR 7 mation where the nucleon fielgt is expanded in terms of
—gaﬁ?“(?)wﬂ(?)} WX)=0, (26) single particle stateg;s. Here
3 [ 0 (%) ]+ m2a(X) =g, ¢ () (%), 2 o —
L ETR Moo (X =0, OWR), @D po(X) =2 BRI, 37
and
FA(R)+ M0 () =g, ()Y (D WX), (28 N e o
" po(X)=2 ¢ (D) 4h(%), (39)
for the nucleong meson, andv meson, respectively. !
Now we choose a specific flat but noninertial frame, that
is a uniformly rotating frame given by the coordinate trans- X o _
formation (1). The metric tensor in this case is JU(X):Z i (X) ai(X), (39
X gxP
9,.,(X)= i v NaB and a similar redefinition of the vector quantities according
gxX= IXx to Koepf and Ring,
1-02%(y?+z%» 0 Q7 -Qy
(g ) 1 0 oy 3°=0° B=0—(QXX)w’ (403
0z o -t 0 Bo=por Jo=R(Di,~(QxT)p,,  (40b)
-Qy o o0 -1
(29) was done. Note tha, is the ordinary spin operator for the
spin=1 field,
Looking at Egs(4), (5), and(29), the simplest choice of the
tetrad is 0 0 O
V()= prop 0O i O
1 o' Obviously Eq.(33) is not stationary in the sense of the ordi-
0 nary cranking model becausg(t) in the first term is time
= ~ = o~ ~ T~ , dependent.
—Q(ysinQt+zcodd t) R.(t) Therefore another choice of the tetrad is desirable to for-
Q(Vcosﬂ?—?sinﬂ?) mulate a stationary mean field theory parallel to the tradi-

tional non-relativistic cranking model. This is possible by
(300 making use of the degrees of freedom of the local Lorentz
transformation(7). This is due to the fact that; has 16
components whereas only 10 components are independent.
£4(R)=x". (31  Utilizing this freedom of choosing 6 components, we adopt
another form for the tetrad,

i.e., the choice of the inertial coordinate

We call this thefundamental choiceThis choice results in

T, (%)=0, (32)

for the spinor field, and accordingly , (30)

kS

|

N
o O +» O
o r O O
~ O O O

- 1~ _ 0y
[R(D)al-| + V=g, @(%) |+ BIM~g,0(X)]
which is called theanonical choic¢17]. In the present case,

~0/~ ~ N S hi rr n hoosing the “instantan ly r
£9,8(X) =0 Lx} i(X)=1904i(X), 33 Era?necsf)wﬁﬁprgsStht?o fheo?(;atgi]ng;t oene assttﬁetlacl)c(::I)I;Si'r?/erti(zlft
frame. This choice results in
(35-V2+m2 -0 o(X)=g,ps(X), (39
_ —-iQ3,
(33-F2+m - 02TH3°%)=0,5,(),  (39) Wx):( 0 ) (32)

[33—-V2+m2 - QAT +S)%w(X)=9,7,(X), (36  for the spinor field, and accordingly



1~ ~
= V-g,0(X) |+ BIM ~g,0(%)]

[a.

+9,@°(X) — QUL+, { i(X) =1 9o4(%),

(33)
(3-V24+m2-022)0(X)=g,ps(X),  (34)
(33-V2+m2—0AHE(X)=9,5,(X),  (35)
(33— V2+m2— 0T, +S)215(X) =0, J,(%),

(36)

for the equations of motion. Equatiqd0b) is replaced by

ﬁv:pv1 }’U:jv_(ﬂxy)pvv (4OU)

while Eq. (409 is independent of the choice of the tetrad.
Assuming the time dependence

(T, %)= gp(R)e &1, (42)
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formation property of they matrices such thagv*y trans-
forms as a(Lorentz vector, their transformeds matrices
absorbed the inadequateness of the transformation property
of the fermion field. In addition, their transformati¢8) for

the spinor and that for the matrices can be regarded as
simulating the local Lorentz transformation from the funda-
mental to the canonical tetrad. These implications are clari-
fied by constructing a correct general relativistic formulation.

To summarize, we have formulated a general relativistic
mean field theory for rotating nuclei adopting the tetrad for-
malism. We applied this formulation to the-o model
which has been known to give good descriptions of various
nuclear phenomena. We needed to adopt the so-called ca-
nonical choice of the tetrad to obtain a stationary equation of
motion in the sense of the ordinary nonrelativistic cranking
model. The results are the same as those of Koepf and Ring
who started from a special relativistic transformation prop-
erty; their inadequateness was absorbed by their transformed
v matrices[13].

A possible way to go beyond the mean field approxima-
tion is the method of Kaneko, Nakano and one of the present
authors[15], but any numerical application along this way
has not been done. A systematic numerical calculation of the

where €; is the single-particle routhian, and the usualyrast states of not only stable, but also unstable nuclei based

T-independence of the meson mean fields, we come to tHg! the present mean field theory is under progress and will
desired stationary theory. This coincides with Koepf andP® Published separately.

Ring’s. The total energy in the laboratory fram@a®xT%,

can be calculated from the energy-momentum tensor in the we acknowledge the comments of K. Harada which in-

rotating frame T#*(X), given by the tetrad formalisifi6].
Again the result coincides with theirs.

spired the present study. Discussions with R. R. Hilton and J.
Konig are also acknowledged. This work was supported in

The reason why they obtained the correct expressionpart by the Grant-in-Aid for Scientific Research from the

starting from Eq.(3) is clear. Since they defined the trans-

Ministry of Education, Science and Cultuiido. 08740209

[1] H.-P. Duerr, Phys. Revl03 469 (1956.

[2] M.H. Johnson and E. Teller, Phys. R&8, 783(1955.

[3] S.A. Chin and J.D. Walecka, Phys. Lei@B, 24 (1974; J.D.
Walecka, Ann. Phys(N.Y.) 83, 491 (1974; S.A. Chin,ibid.
108, 301 (1977.

[4] As recent reviews, P. Ring, Prog. Part. Nucl. Phy8. 193
(1996; B.D. Serot and J.D. Walecka, nucl-th/9701058.
[5] Y.K. Gambhir, P. Ring, and A. Thimet, Ann. Phyl.Y.) 198

132(1990.

[6] C.E. Price and G.E. Walker, Phys. Rev36; 354(1987); R.J.
Fuhnstahl, C.E. Price, and G.E. Walkixid. 36, 2590(1987%);
W. Koepf and P. Ring, Phys. Lett. B12 397 (1988.

[7] N. Takigawaet al,, Phys. Rev. (50, 1038(1996.

[8] E.D. Cooperet al, Phys. Rev. C47, 297 (1993, and refer-
ences cited therein.

[9] Z. Renet al, Phys. Lett. B380, 241(1996; D. Hirataet al,
Nucl. Phys.A609, 131 (1996; J. Meng and P. Ring, Phys.
Rev. Lett.77, 3963(1996.

[10] T. Hatsuda, H. Shiomi, and H. Kuwabara, Prog. Theor. Phys.

95, 1009(1996, and references cited therein.

[11] S. Nishizaki, H. Kurasawa, and T. Suzuki, Nucl. Phyd62,
687 (1987).

[12] A.F. Bielajew, Nucl. PhysA367, 358 (1981J).

[13] W. Koepf and P. Ring, Nucl. PhysA493, 61 (1989; ibid.
A511, 279(1990.

[14] J. Konig and P. Ring, Phys. Rev. Leftl 3079(1993; A.V.
Afanasjev, J. Kaig, and P. Ring, Phys. Lett. 867, 11(1996;
Nucl. Phys.A608, 107 (1996; J. Konig, Ph.D. thesis, 1996
(unpublisheg

[15] K. Kaneko, M. Nakano, and M. Matsuzaki, Phys. Lett3B7,
261 (1993.

[16] S. WeinbergGravitation and Cosmology: Principles and Ap-
plications of The General Theory of Relativifwiley, New
York, 1972, p. 365; N.D. Birrell and P.C.W. DavieQuantum
Fields in Curved Spacé&Cambridge University Press, London,
1982, p. 81.

[17] C.G. de Oliveira and J. Tiomno, Nuovo Cimenfd, 672

(1962; T.C. Chapman and D.J. Leiter, Am. J. Phyd, 858

(1976.



