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Abstract

Two-dimensional SU(N) gauge theory is accurately analyzed with the light-front
Tamm-Dancofl approximation, both numerically and analytically. The light-front
Einstein-Schrédinger equation for mesonic mass is reduced to 't Hooft equation in the
large N limit with g?N fixed, where g is the coupling constant. Two mesonic and one
baryonic bound states are obtained numerically in the strong coupling region, g*N »
m? for small N, where m is the bare quark mass, and the N- and m-dependences of the
hadronic masses are shown. The lightest meson and the baryon consist predominantly
of valence quarkes. The second mesonic state is highly relativistic in the sense that
it has a large four body component in addition to the valence one. Our results are
consistent with results of the lattice calculation for SU(2) and also with the prediction
of bosonization for ratios of the two mesonic masses to the baryonic one in the strong
coupling limit.

1 Introduction and summary

. Two dimensional SU(N) quantum chromodynamics QCD(N); is a good model
mp.smw.:_.m ideas and tools which are expected tc be feasible in analyses of QCD in 3 + 1
dimensions. 't Hooft introduced the model to test the power of the 1/N expansion[1]. He
summed planer diagrams which dominate the leading order in the cxpansion and derived
an equation. The ’t Hooft equation is valid in the large N limit with g?N fixed, where gis

the coupling constant. The mass spectram of the equation reveals a nearly straight “Regge
tragectory”.

2817

The large N limit corresponds to the weak coupling one. The 1/N expansion then
works in the weak coupling regime, but not in the strong coupling one, because it is almost
impossible to calculate higher-order terms in the expansion. For this reason, QCD(N); in
the strong coupling regime has been studied with some other methods so far. Neverthless,
the dynamics is not understood well in the region.

Recently the light-front Tamm-Dancoff(LFTD) approximation[6] has been pro-
posed as one of the alternative non-perterbative tools to lattice gauge theory. In the
standard equal-time field theory the vacuum state is an infinite sea of constituents and
hadrons arise as excitations of the sea. It is then unlikely that the vacuum and the hadrons
are well described with a finite number of constituents. In fact such a truncation of the
Fock space, i.c., the Tamm-Dancoff approximation[7], causes some serious problem(6]. Such
problem do not appear in light-front field theory[8], owing to the fact that the vacuum is
trivial on the light cone{8].

In this work, QCD(N), is investigated in the region, g?N > m? with LFTD; the
region corresponds to the strong coupling region for small N, and for large N it covers not
only the strong coupling region but also the medium and weak coupling ones. We first derive
the light-cone Hamiltonian , P~, and the Einstein-Scrd dinger(ES) equation, 2PP|¥) =
M?|¥), for hadronic mass and wave function, M and |¥), in the framework of the light-front
field theory[8]. As the Tamm-Dancoff approximation, the mesonic SU(N) wave function
is described with two-body and four-body states, and the baryonic wavefunction with the
N-body state. Inclusion of the four-body state is essential to obtain the second lightest
relativistic bound states. The ES equation is numerically solved by diagonalyzing P~
within the space spanned by a finite number of basis functions. All tools needed for this
calculation are prepared by our previous work[10] for the massive Schwinger model. Only
the mesonic case is presented in this manuscript. The details are written in Ref. [11).

2 Light-front Tamm-Dancoff approximation

2.1 Light-cone Hamiltonian

The Lagrangian density of QCD(N), for interacting quark and gauge fields, ¥ and
A (a=1,2,...,N* = 1),is
1 Fo-

L=~ Fo o + (i7" Dy = m), M
where D, = 8, —igAT® and F?, = 0,4}~ 8, A + g fare AL AS for the generator T* and the
structure constant fay of ch&. Light-front field theory[8] starts with the introduction of
light-cone coordinates, z# = (z+,z7) = ((z°+ /2, (2° — z')/V/2); for any other vector,
VE = (VO & V')/V2. ( We take the same notations and conventions as in Ref. [10, 11].)
The equations of motion are

V20_¢ = myn, ()
iV20,9r = mir — V29A ¥, (3)
P A = V2gPr'T¢Yn, (4

0.0, A" = VaguIToyp + gfanc AP O_A°. (5)

il
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for the light-cone gauge, A** = 0, where ¥ = (g, ¥1.)7. The first and third equations do
not involve the time derivative (3, ) and are therefore just constraints which determine g,
and A” in terms of ¥r. Thus, ¥ and A~ are not independent variables and not subject
to a quantization condition. The constraints are then solved with the inverse derivative
operator 8-

w(e) = —izs [dyels — g uml), (®)

A (z7)

,\:n .\55 )T Yw(z7), ()

where €(z) is 1 for z > 0 and —1 for z < 0. The only independent variable g is quantized

by an anticommutation relation at the equal light-cone time 2+ = y*,

{Binle), B3 (W) oeoys = wﬁ%l _—— (8)

Adopting the light-cone coordinates and ligt-cone gauge thus reduces a number of indepen-
dent variables. This is an advantage of light-front field theory. The energy-momentum vec-
tors commute mutually and are therefore constants of motion. “The time component(light-
cone Hamiltonian) is

P (z7)e(z™ ~ y7)ym(y")

2
_y —at(n =\ L ety -

> [di @)t ). (©)

The field g is expanded at z* = 0 in terms of free waves [12], each with momentum k*,

- 1 had &sn..v —iktzm ikt
Yin(=") = 577 | wﬂ\ﬂ? i(K)e™™ T 4 dil(kT)e ), (10)

with
{bi(k), b1 (1)} = {di(k™), &1 (1)} = 2mk*8,;8(k* — 1), (11)

The color current, j°* = /2 : ¥p'T*¢y :, is normal-ordered with respect to the creation
and annihilation operators. The charge is then

\ dz= o+ .W“SJ@

dk*
o 2mkt

[ (KT )b; (k™) — diH(K*)di(k™)). (12)
The last term in P~ can be rewritten with the standard Fourier transform [13],

SN
[ 575 a0) 57 (a7)
N-1

3 Q°Q" + o(w), (13)

1
= d “dzT et~ = — ot Y
w\ zydzy 5t (27) 2y — 25157 (27) Ad P
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where an integral form of the inverse operator 82 is used. The term Q%/4n (Q* = ¥ Q°Q°)
enforces confinement, restricting finite eigenvalues to the color-singlet { @ = 0 ) subspace.

The Hamiltonian can be expressed with the creation and annihilation operators.
The Hamiltonian does not involve any term having the creation operators only or the
annihilation ones only. This indicates that the Fock vacuum is an eigenstate of P~ i.e, a
true vacuum. The property of the Hamiltonian stems from the conservation of the total
light-cone momentum. Each particle must have either zero or a positive momentum, as
shown in Eq. (2.8). The creation or the annihilation of particles, each with positive k*,
breaks the conservation. An exception is the zero mode (k¥ = 0): Only the mode can
make the true vacuum non-trivial without breaking the conservation. The mode is thus
responsible for non-trivial structure of vacua such as spontaneous symmetry breaking. In
the present model, however, the mode is prohibited as long as m # 0, because the mass
term in Py, enforces the eigenstate of P~ to vanish at k¥ = 0 [14].

2.2 Hadronic color-singlet states

The conserved color charges Q* ( @ =1,2,...,N% — 1) are generators of SU(N).
These can be recombined into N — 1 operators being mutually commutable and N(N —1)/2
pairs of raising and lowering operators. Whenever these operators act on color-singlet
states, the value is always zero. Using the condition, one can easily construct color-singlet
states of meson and baryon. The color-singlet states are expanded in terms of the number
of quarks and antiquarks, and truncated to the two- and four-body components in the case
of the mesonic state and to the N-body one in the case of the baryonic state. The @*’s
do not couple the truncated space with the remainder, so they keep proper commutation
relations between them within the truncated space. The truncation, i.e. the Tamm-Dancoff
approximation [7], thus does not break the SU(N) symmetry (see the details in Ref. {11]).

3 Numerical method and results

3.1 Basis functions

The truncated ES equation for hadron masses are numerically solved with the
variational method: The wave functions are expanded in terms of basis functions, and the
coefficients of expansion are determined by diagonalizing P~ in the space spanned by the
basis functions. All tools needed for computations are shown in Ref. [10, 11].

3.2 Numerical results’

In general, M calculated with the variational method depends on N, which calac-
terize the size of the space spanned by the basis functions, unless the space is large enough
to yield an accurate M. In the present calculation, the space would be sufficiently large,
since the dependence is very weak, owing to the effective choice of basis functions. Here-
after, m and M are presented in units of /g2 N/2x.

The m-dependence of hadoron masses obtained with full-fledged calculations is
shownin Fig. 1 for both SU(2) and SU(3). There are two mesonic and one baryonic bound
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states in the range m < 0.1. The lightest meson is composed predominantly of valence
quarks; in the case of SU(2), for example, P, = 98.3% and P, = 1.7% at m = 1074,
where P,(P;) is a probability of being in the ¢3(qqgq) state. The lightest mesonic state is
odd under charge conjugation, because the two-body component (¢g) is symmetric under
7y > z3. The second lightest state is, on the other hand, highly relativistic in the sense
that P, ~ P,; in the case of SU(2), for example, P» = 42.9% and P, = 57.1% at m = 10~*.
This state is even under charge conjugation, since the two-body piece is antisymmetric
under z, ¢ . .

The lightest mesonic mass is calculated also with the bosonization{2, 4], the lattice
theory {3, 4] and the DLCQ method[5). These results are compared with ours, in Fig. 2,
for SU(3). The lattice calculation has much larger errors than ours, but both are consistent
with each other within the errors. The DLCQ result matches well to ours at m > 0.3, but
it lies too low at m < 0.2.

The approximate solutions to M, (lightest meson) and M,(lightest baryon) are com-
pared with numerical ones obtained with the full-fledged calculations, in two cases of SU(2)
and SU(3). For SU(2), the apptoximate M, is exactly equal to the approximate M,. They
are depicted by a single dashed line in Fig. 3(a), and compared with the numerical solu-
rions for M, (solid line) and for M(dot-dashed line). The approximate solution matches
well to the numerical results for both M; and M,. For SU(3) in Fig. 3(b), the approxi-
mate solutions well reproduce the numerical ones, for both M; and M,, at m < 0.1. The
agreement would be seen also at N larger than 3; this is true at least for M, (see Fig. 4).
The N-dependence of M, and M, is thus obtained accutately with the accutately with the
apptoximate solutions, as long as m? « 1.

The N-dependence of M, and M, is shown at m = 1074, in Fig. 4 where N is
varied widely from 2 to co. The approximate solution to M,(dashed line) well simulates
the numerical solution (solid line). As expected from the weak N-dependence of the ap-
proximate M, M, at small V is close to that at N — oco(the lightest 't Hooft mass). The
second mesonic mass is below the threshold(2M,) for N = 2,3, but not for N > 4. The
second mesonic state is thus bounded only for such small N. The existence of the second
bound state at small N is unpredictable from the leading order in 1/N, since the state
becomes unbound at N — co. The 1/N expansion thus works well for the first mesonic
mass, but not for the second mass.

4 Discussion

Some unsettled problems are discussed.

(1)A natural expectation for the Tamm-Dancoff approximation is that it works best
at weak coupling rather than strong coupling. The present work, however, points out that
it works in both the regions. As an evidence, the lightest meson copsists only of a ¢-§ pair in
the strong coupling limit, so that the meson has small four-body components even for large
but finite g. Similar results are seen in the massive Schwinger model[9, 10]. It is not obvious
whether the approximation still works in four dimensions, since the four-simensional QCD
Hamiltonian is much more complicated because of the transverse directions.

(2)Our truncated Fock space consists of the two- and four-body states in the
mesonic case. Further inclusion of six-body states would produce the third mesoni¢ bound
state at strong coupling. This may be expected from the following considerations in the
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limit of strong coupling: The bosonization[2] predicts for SU(N) meson that there appear
2N — 1 massless bound states, and DLCQ([5] does that there are many massless mesonic
states and the n-th state consists of n components from two-body to 2n-body.

Throughout this work, we conclude that LFTD is a powerful tool for computing
non-perturbative quantities such as hadronic masses. We believe that LFTD is more useful
than the 1/N expansion and the bosonization which are valid only in a particular situation
such as the large N limit or the large g/m limit.
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