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Abstract

The nuclear wobbling motion is investigated from a

icroscopic viewpoint. [t is shown
that the expressions of not only the excitation energy but also the E2 transition rate in the

roscopic RPA framework can be cast into the correspon ing forms of the macroscopic
rotor model. The condition thal the microscopic RPA solution can he interpreted to be the
wobbling motion is clarified.

§1 Introduction

In this talk We would like to discuss the wobbling motionV, which is a collective
molion expected in nuclei by an analogy with the classical motion of the asymmetric
top. Itis a kind of the three dimensional motion in the sense that the rotation axis and
the inertia axis of the body do not coincide. Quite recently the "tilted axis cranking”
scheme has been proposed®. It might be instructive Lo compare characteristic feabures
of these two. They are similar since the rotation axis deviates from Lhe inertia axis,
Lut these two are conceplually different as in the following, alt wugh it might be
difficult to distinguish in the experimental data. In the wobl ng motion the angular
momentum vector and the angular frequency vector are not parallel in the body-fixed
frame of coordinate and then the motion is not stationary. Ilence the two vectors draw
some trajectories even in the body-fixed frame. In contrast the angular momentum
and the angular frequency vectors are parallel and as a result the rotation is stationary
and uniform in the tilted axis cranking. When quantized the tilted axis cranking gives
a description for an isolated band just like the usnal cranking does, but the wobbling
motion generally corresponds (o a multiple band structure in the quantal spectra.

‘There is a basic vacuum band, e.g. the yrast band, [rom which excited bands are
generated just like the multi-phonon structure; one wobbling phonon excited band,
two wobbling phonon excited band, and so on. In cach bands (horizontal sequenccs)
stales are connected by the strong rotational £2 transitions, while these phonon
bands are also vertically connected by AJ = %1 £2 or M1 transilions in general.
fere the vacuum band is just described by the us cranking, i.c. the uniformly
rolaling states around the inertia axis of the largest moment of inertia, but when
the wobbling phonons are excited the rotation axis deviates from the inertia axis
wore and more. Since higher excited bands are difficull to access in experiments, we
concentrated on the first wobbling band and discuss the characteristic feature of the
Al = +1 £2 transition to the vacuum band in the [ollowing.

§2 Microscopic formulation

Now how lo calculate such a excited band like the wobbling phonon band? We use
the microscopic formalism? based on the random phase approximation (RPA), which
is generally known to be suitable for describing the vibrational motions. For the first
cxcited wobbling band, the deviation of the angular momentum vector from the usual

40

cranking axis, z-axis, is expected to be small and the excitation mode transfer the
angular momentum by %1 unit so that it has definite signature r = —1, ora= H
The excitation energy is given by the well-known RPA eigen-value mncp:o:” Since
the equation generally gives many solutions, most of which are of non-collective na-
ture, we denote the n-th eigen-value, fiw,:
ﬁ\\ - m.Eno...\H_ \/\:F—; = \:.t:uﬂu: A:

n

where X} is the n-th phonon creation operator and as for the microscopic hamiltonian
we use the cranked-Nilsson single-particle potential and the pairing plus Q@ residual
interactions. Another important observable is the A7 = £1 2 transitions ?Ed :ﬁ
n-th RPA phonon excited state to the vacuum state, the transition energy of .s;:n: is
is given by I7,(n) = hiw, F hwe, and can be quite simply calculated in the high-spin

limit:
. - 2w 1 71\ 2
B2t = IO £ QR PIE = (@ F 2.0P), @

where the transition operator is composed of the signature-coupled quadrupole oper-
ators with J¢ (with respect to z-axis) = 1 and 2 and » = —1, and explicitly written

as

1

- 1/15 & _ - _ .
Qb= -3 L =Q Qi=i; = Q.. (3)

The transition malrix elements are evaluated by a commutator with the phonon
annihilation operator, @, .(n) = [X., @y..Jrra, and are denoted by script Q’s. Here
we introduced the notation, @, and @, for these non-diagonal part of the quadrupole
tensor. This is because these operators describe the shape fluctuations around y, z-
axes. Actually, by taking the commutation relations with the corresponding angular

momentum operator, Jy .,

mﬁwe_ .&.,\Lmﬂmﬁ = /\M\‘W WQ&& - vanv = NNNMQS ANC

a=1

_&-©wa> = /\MHWMUAAHM - @uvav = wNNQ: Amv

a=]

we get the diagonal part of the quadrupole tensor, or the static deformations around

i ~ 5 i ir
y, z-axes. Here we denote the corresponding parameters, a, = /=€ sin {7y + ) and

QNR l/\|3 mmzq.>mmm€m:-rdo€?:Hmm:-vm:QDNHH@NS@:mmSo:mnwsvm

calculated by these stalic deformations for both the vacuum and the wobbling bands

within the RPA as

mﬁmmvmzlvf& ~ ﬁmmvwwwgo& —w vm Amv
ar=2 ®\*7) 3 y 2"
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Note that in the ground stale, where no rotation is imposed, either Q, or Q, ampli-
tudes is zero. If the system is cranked AK = 1 K-mixing induced by the rotation
makes both amplitude non-zero at the same time. Then the transition rates with
Al'= +1 and —1 transitions can be different and show staggering just like the well-
known staggering of B(M1) belween the signalure partner bands in odd nuclei®.

From the calculational point of view the discussion until now is enough. But then
how the wobbling picture comes out? One must make a (time-dependent) coordinate
transformation in order {o see this. Though not mentioned explicitly, we have worked
out, up to now, in the so-called uniformly rotating (UR) frame. There the rotation is
round the z-axis. It is, however, not the appropriate coordinate system becanse
¢ (time-dependent) shape-fluctuations are induced by the excitation of the wob-
bling phonon so that the quadrupole tensor of the system is non-diagonal. As in the
description of the rigid-bady, we naturally come to the so-called principal axis (PA)
frame® by diagonalizing the quadrupole tensor. Then the shape fluctuations disap-
pear and, in place of it, the coordinale transformation makes the angular momentum
and angular frequency vectors to wobble around the z-axis. Namely, in terms of the
time-dependent mean-field theory, the single particle hamiltonian corresponding to
the state with the wobbling phonons excited is

\NCZA‘.V = \fl - \.V‘ES,.\H - Ky @wﬁv@n — Ky DLNVQS Aﬂv

in the UR frame, while

hpa(t) = hget — hword, — huwy()J, = hw,(1)J,, (8)

in the PA frame, where w,o, & w, in the small amplitude RPA approximation. Since
the angular momentum vector is not parallel Lo the angular frequency vector, three
moments of inertia can be defined in the PA frame, as is usual, by QMMN?V =
(Iey:(n))pa/Puw.,, .(n) where the (n) denotes that I and w vectors are evaluated
with respect to the n-th RPA solution. Note T = T, = I /hwe, where I is the spin
of the vacuum cranked slate, again within the small amplitude approximation.

Using the three moments of inertia thus introduced, it can be shown that the
cxcitation energy is written as?),

hwn = IW,(n)W,(n) with W,.(n)= A\,.N‘\s_f:v - 1/T. (9)

and the F2 transition is as®),

inter Zy21 W, (n)y1/s W, (n)y1/4y2
B(E2)R L4, & ?Mv M\N nzhfﬁﬂM:iU Haumhmﬂ%v V , (10)

i

where (Q, ,)(%) (eZ/A)Q,. is assumed. Notice that these expressions formally
coincide with those given by the macroscopic rotor model, except the overall factor
¢? and the sign o, for the £2 transitions probability, namely, if ¢2 = 1 and o, =
+ then it exactly coincides. Let us call the : -roscopic RPA solution wobbling-
like if it (approximately) satisfies these condilions. Generally, ¢? is not exactly 1

n
tnicroscopically even for the ideal case* because there are many RPA solutions in

“Actually, a kind of "some rule”, MV.%ZQ 20, = 1, cin be proved®.
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contrast to the simple rotor model, but the presence of the am.?.ag sign ?Q‘on O =+
gives us an important phase rule. Comparing with the original expression m@.ﬁ.mvv
relative sign between the static and the dynamic deformation coincide if the sign

factor 0, = +;

sign of (Q,(n)/Q.(n)) = sign of (a,/a,). (11)

Thus, the zigzag behaviour of the A7 = 1 E2 transitions, in addition to the energy
spectra, reflect the behaviours of both the triaxiality of the mean-field m:m the :ig
momenls of incrtia. Especially, as a result, for the wobbling-like RPA mo_.::c:m“ ,<._:n__
transition probabilily is larger, i.e. one with I - /41 or [ — N - H.. _mjmﬁ,o::_:oa
solely by the triaxiality. The relations are schematically m:EE@:S&.E Fig.1.

It should be mentioned that the appreciable amount of deformation around y, z-
axcs are necessary, o, # 0 and «, # 0, in order for the transformation to be _vnl.o:m
from the UR to the PA frame: Namely, the siall amplitude ansats of the "wobbling
motion in the PA frame should be satisfied®,

O(VT) ~ I,(n)pa/T = Q.(n)/2R%a,,
O(/VT) ~ —(L(n)pa/] = Qy(n)/2R%,. (12)

This cqualion also shows that the amplitude of the "wobbling” of the E._m:_:,_. mo-
mentum vector in the PA [rame is related to the fluctuations of delormation around
y, 2-axes, i.e. the ratios of the dynamic and the static deformations, in the UR frame.

E2a1=41 transitions for wobbling band
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Figure 1: Schematic figure depicting the relation between the triaxiality of the mean-field and
the A = 4+ E2 transitions from the wobbling band to the vacuum band. The transitions with

stronger B([£2)’s are marked in the spectra (right pannels).
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§3 Discussions

In contrast to the case of the M1 transitions between the signature partner bands
in odd nuclei, the zigzag behaviours of the AT = +1 interband E2 transitions in
even-even nuclei are not observed so often. The only exceptions are the transitions
between the well-known + band and the ground-state band at low-spin. It has been
shown® that our basic formulation can be applicable also in such cases and gives
satisfactory agreements with data.

Encouraged with these results, we have performed some realistic calculations® at
higher-spins, where the AKX = +1 mixing eflects caused by the Coriolis interaclion
and the alignments of quasiparticles are expected to more favour the appearance of
the wobbling-like colleclive motions. One of candidates of the wobbling band has
been known*®) in #20s. We have found another possible candidate in 124X e whose
yrast is the s-band (two neutron quasiparticles aligned) after I > 8% and expected to
have v = —45°. As in the case of '¥?Os this nucleus belongs to the region 2 in Fig.1
and, therefore, has stronger J — I+ 1 B(E2)’s. It should be mentioned, however,
the M1 transitions are non-negligible in this nuclei in contrast to the case of ¥20s,
see rel.6) for details.

Interestingly enough, as far as we have studied, when the collective RPA solution
exists the lowest always satisfies the condition of the wobbling-like solution, eq.(11).
However, it has been shown® at the same time that the microscopically calculated
-dependence of the three moments of inertia is neither irrotational nor rigid-body
like. Therefore the microscopic properties of the nuclear wobbling motion is not so
simple as is expected from the macroscopic rotor model. As an example, the Af1
transitions can be very strong depending on the quasiparticle configuration of the
vacuum band, e.g. whether quasineutrons or quasiprotons are aligned. It should be
noticed that important information of the triaxiality and the three moments of inertia
can be extracted from the combined use of both the energy spectra, eq.(9), and the
ratio between the in-band, eq.(6), and the interband, eq.(10), B(E2)’s.

The Al = +1 E2 transitions under discussions are typically ten times the Weis-
skopf unit. Although largely enhanced, they are still an order of magnitude smaller
compared to the in-band rotational E2 transitions. We hope that new generations
of the large array of the crystal ball will give us more detailed information of the
electromagnetic transitions, which are necessary to confirm our predictions and to
identify the nuclear wobbling motion if they exist.
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