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Three-dimensional collective rotation and intrinsic motion in relativistic many-body systems are described by a relativistic 
quantum field theory vath the Lagrangtan containing nucleons and mesons. In this reasoning, the cranking model m uniform 
rotation ts extended to the case of non-umform rotation w~th a t~me-dependent cranking term. Since a rotating frame is an accel- 
erated one, the technique of general relativity is used. The body-fixed frame is determined by imposing constraints, which corre- 
spond to the gauge-fixing condiuons in the gauge theory. A canomcal formulatmn of three-dimensional rotation and intrinsic 
motion is denved from this constrained system. The quantization of the classical system is performed using the Dirac procedure. 

In  recent years, exper imenta l  da ta  on the high-spin domain  of  deformed nuclei  above the yrast  line has in- 
creased. In a non-rela t ivis t ic  formulat ion,  the self-consistent cranking (SCC) model  [ 1 ] is useful in describing 
microscopical ly  the yrast  states of  uni formly  rotat ing nuclei. For  non-uniform rotat ion,  several authors  have 
proposed  the use o f  the r andom phase approx ima t ion  ( R P A )  method  [2,3] ,  which describes small  ampl i tude  
f luctuat ions of  the yrast  states. In the RPA, the devia t ions  from uni form rota t ion are descr ibed as small  oscilla- 
t ions of  the ro ta t ional  axis, or  so-called wobbl ing motions.  However,  this me thod  is l imi ted  to small  ampl i tude  
collective motion.  It is s impler  to describe non-uni form rota t ion f rom a moving f lame by in t roducing the Euler 
angles. This method  is considered to be a general izat ion of  the cranking model  in the case of  non-uni form rota- 
tion. However ,  the degrees o f  f reedom of  the system are overcomplete  due to the in t roduct ion  of  the Euler 
angles, and consequent ly  zero modes  arise which leads to infrared divergences [ 2,4].  When  we go beyond  the 
RPA to higher orders,  the convent ional  per tu rba t ion  method  fails due to the presence o f  these zero modes.  
Therefore,  constraints  to de te rmine  the intr insic  f rame microscopical ly  are needed in order  to e l iminate  these 
zero modes.  One o f  the present  authors  (K .K. )  has recently proposed  a method  [ 5 ], based on the t ime-depen-  
dent  Har t ree -Fock  ( T D H F )  theory,  which differs f rom the approach  of  Bes, Kurchan,  and  Barrios [6] ,  and 
Ke rman  and Onishi  [ 7 ], to descnbe  collective rota t ion and intr insic  mot ion  beyond the RPA to higher orders. 
Then,  the mot ions  on the T D H F  submani fo ld  were complete ly  separated into three-dimensional  collective ro- 
ta t ion and intr insic  mot ion  by imposing  the constraints.  

A relat ivist ic  quan tum field theory,  which consists o f  nucleons and mesons, has recently been developed to 
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study nuclear many-body problems [ 8,9 ]. The mean-field theory (MFT),  which was proposed by Walecka [ 8 ], 
can reproduce the bulk properties of doubly magic nuclei well. One of the present authors (M.N.) and Hasegawa 
[ 10 ] recently have presented a fully quantum-mechanical treatment of a spherical finite nuclear system on the 
basis of the Schwlnger-Dyson formalism. The MFT was applied to axial-symmetric deformed nuclei [ 1 1 ], and 
it was shown that it can be used to describe collective rotation. Furthermore, Koepf and Ring [ 12 ] have studied 
uniform rotation in the framework of the MFT. Their model described the axial-symmetric deformed nucleus 
based on the cranking model with constant angular velocity. They investigated the yrast line of the deformed 
nucleus 2°Ne, and obtained a good agreement with experimental data: the binding energy, RMS radii, and quad- 
rupole moments. Furthermore, they investigated superdeformed shapes in rapidly rotating nuclei 8°Sr and 152Dy 
[ 13 ]. In their calculation, they found the ground state of 8°Sr to be triaxial deformation, and a smooth increase 
of the deformation parameter 7 with total spin. However, their method is restricted one-dimensional cranking 
in spite of triaxial deformation. The cranking method is basically classical and can be understood as an approx- 
imation to a fully quantum-mechanical description. Then, we can expect quantum fluctuations around the three- 
dimensional cranking solution. 

In this paper we will apply our method in the non-relativistic formulation to the relativistic many-body system 
m non-uniform rotation, and present a complete and consistent theoretical treatment of the quantum fluctua- 
tion and the intrinsic motion. Then, it will be shown that the separation of the three-dimensional rotation and 
the intrinsic motion is also done in the relativistic many-body system. 

We first start from the Landau-gauge Lagrangian density in the laboratory frame: 

Y'= ~(yui0u - m - g , , a - g o ,  yuVu)~,,+ ½ (OuaOua- m~a  2) - i4Fu~FU~+ ½ mE V u VU+ BO u V u , ( l a )  

r u ~ = O u V , - O v V u ,  ( lb )  

where ~u, a and V u represent the nucleons with mass m, a-meson with mass m~ and w-meson with mass mo,, 
respectively. The ~u, a and V u are described by the spinor (Grassmann) field, the scalar field and the vector field, 
respectively, and B is the auxiliary scalar field due to the Landau gauge. The nucleons and the mesons interact 
with each other through linear meson couplings. The nucleon mass m and the ag-meson mass mo, are usually 
given by experimental values. The coupling constants go, go, are determined by fitting to both the nuclear matter 
characteristics and some of the ground state properties of nuclei. Since the Lagrangian of a massive vector meson 
field does not have a local U ( 1 ) gauge invariance, in general it is not necessary to introduce the auxiliary field 
B. However, if the canonical procedure is carried out, there is a shortcoming, because Vk and V0 do not commute 
at the same time. This gives rise to some serious problems, which are obviated by introducing the auxiliary field 
B. 

From the variational principle for the Lagrangian density, the equations of motion are given as 

, ma,) V - 0 B - g a ,  J ~ ,  (2a,b,c) [ - i a . V + g o ,  Vo+f l (rn+g, ,a)]q /=iOo~ [ T a + m ~ a + & , p = O ,  (E l+ 2 u u _  • 

OuV*'=O . (2d) 

[3_=Ou0u=0Z-A, p = ~ t t ,  j~=g_tyu~, (2e) 

where [] and A are the d'Alembertian and Laplacian, respectively. Eq. (2a) is the Dirac equation for nucleons, 
and (2b), (2c) are the Klein-Gordon equations for mesons. Eq. (2d) is the Lorentz condition. 

The canonical formulation is obtained from the canonical conjugate fields defined as 

11 , -  00, '  q,=_(tu, a, V ) ,  (3a) 

and then the H, are given by 

H = i ~ + ,  H,=~r ,  I l k=Fok  ( k = 1 , 2 , 3 ) ,  H o = B ,  (3b) 
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where the dot denotes the time derivative. As is well known, there are two kinds of derivative due to the anti- 
commutation of the Grassmann number: right derivative and left derivative. Hereafter, we will use the right 
derivative. Thus, we can obtain the Hamiltonian density 

+~Fv  X f = _ i ~ , a . V v + ~ ] , f l ( m + g . a ) + g o ~ , ( V O _ a k V k ) v + ½ ( H 2 . + O ,  aO, a+m2a2)+½H2 , 2 

.jv l 2 :mo~ VZu - (OkB) Vk + Ok (Fok Vo +BVk) , (3c) 

where the Greek subscript denotes the four components #, v= 0, ..., 3, and the Latin one denotes the spatial 
component l,j ,  k= 1, ..., 3. Then, the Hamiltonian is given by 

f ~F,j H= dax[_i~, ,a .V!u+Vtf l (m+goa)+g,o!u,(VO_otkVk)~/+½(i12+O, aO, a+m2a2)+l I12+~  2 

2 2 +[mo, V u (0kB) Vk] , (4) 

where the last term of eq. (3c) does not contribute in the above integration. The canonical quantxzation is 
carried out by setting the following commutation relations with equal time: 

{q/(Xo, x),  H(xo, y ) ) = i d ( x - y ) ,  {q/(Xo, x), ~U(Xo, y)} = {H(xo, x), H(xo, y)} = 0 ,  (5a,b) 

[a(xo, x) ,  Ho(xo, y) ] = i d ( x - y )  , [a(xo, x),  a(x0, y) ] = [H~(xo, x) ,  H,(xo,  y) ] = 0 ,  (5c,d) 

[ Vu(xo, x), H,(xo,  y)  ] = i r u ~ 5 ( x - Y ) ,  [ Vu(xo, x) ,  V~(xo, y)  ] = [Hu(xo, x) ,  H~(xo, y) ] = 0 .  (5e,f) 

Let us next consider a many-body system of a tnaxial deformation. It is simpler to describe it from a three- 
dimensional rotating frame of reference. The coordinates x 'u = (t', x',  y', z ' )  in the rotating frame are expressed 
by the following transformation [ 14 ] of the coordinates xU= (t, x, y, z) in the laboratory frame: 

x,U=MU~x~ ' (6a) 

o o o )  
COS01 COS02 COS 03--sin 01 sin03 sin01 COS02 COS 03"~-COS 01 Sln03 --COS 03 sin02 

M =  -cos01 cos02 sin 03 - sin 01 cos03 -s in01 cos02 sin 03 + cos 01 cos03 sin03 sin02 ' (6b) 

cos 01 sin 02 sin 01 sin 02 cos 02 

where 0, are the Euler angles. The Euler angles are the dynamical variables depending on time, and will be 
determined by intrinsic frame conditions later on. 

Since the rotating frame is an accelerated one, we must use the technique of general relativity rather than that 
of the special relativity. Thus, the covariant metric tensor gU~ is expressed as 

Ox'U,~aOx'~=(T~lTX,U~ ~ / = ( ;  ._0) T = (  1 01) (7a,7b, 
gU~= Ox ~ ,i Ox a , 1 ' - ( l~×r ' )  ' 

where D = (121, 02, 03 ) xs the angular velocity vector with respect to the rotating frame and r' = (x',y', z ' )  is the 
coordxnate vector in the rotating frame. The angular velocities Ok are expressed by the Euler angles 0, as follows: 

Ok=Vk, O,, (8a) 

where the transformation matrix V is given as 

 _Sl O CO O  !) 
V= [ sin 02 sin 03 cos 03 • (8b) 

\ cos 02 0 

The a(B)-field, the V-field, and ~u-field transform like the scalar, the vector, and the spinor, respectively, and 
then the a'(B')-field, the V'-field, and the q/-field in the rotating frame are expressed as 
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a ' (x ' )=a(x)  B ' ( x ' ) = B ( x )  V'~(x')= Ox'____~ V . ( x )  , 
, , 0 x  ~ 

~ ' ( x ' )  = A ~ ( x ) ,  A=exp(iO~s~) exp(i02Sv) exp(i0~Sz), 

S x = ½ i ~ ) 2 ~  3 , S y = ½ i ~ ) 3 ~  1 , s~=½i~72, 

where s~, Sy, and Sz are the matrices satisfying the SU (2) algebra 

[s,, s~] =i~vkS~. 

(9a,b) 

(9c) 

(9d) 

Since the vector coupling term #/u~,V u in the Lagrangian ( l a )  is the Lorentz scalar, we should require that 
~77uV transforms to a contravariant vector: 

Ox u 
~(x)TU~,(x) = ~ ' (x ' )ATUA*~' (x ' )  -~ Ox,---- ~ ~ ' ( x ' ) y ' ~ ( x ' ) v ' ( x  ') . (10a) 

Therefore, we obtain the following relationship for the gamma matrices depending on the coordinate x 'u in the 
rotating frame: 

7'U(x ') = ~ x U A ~ A * =  TUV7" . (10b) 

We define the covariant derivative as follows: 

D ~ = 0 ~ + F ~ .  (11) 

Since the derivative term t p ( x ) y~O~(x )  is a scalar, the term should satisfy the relationship 

~p(x)?UOu~t(x) =~ ' (x ' )AT~OuA*~, ' (x ' ) - - .~ ' (x ' )7 '~D'~ ' (x  ') . (12) 

Therefore, we get 

[ -- i~-~kSk \ 

F u=AOuA - 0  r = , (13) 

when we use the relationships 

0.4* 
- --iA*Vk, Sk. (14) 

oo, 

Thus, we can obtain the Lagrangian density in the rotating frame: 

£p,=~,(y,UiD, _ m ) ~ , _ g ~ a , p , _ g ~ o V ,  j,# +½(gU~O, a, O. a , _m2a ,2 )  ,~.~..~p,~, tz, -- ~6 ,5 "~ # v z a f l  

-JV 1 v~ 2 o , u v b  r '  b r '  - - I -Rto ' ,uvt~  , g '  (15a) 
2 ,, ~ r.06 v ~ v V - - ~  0 v J / - - V  ~ 

p ' = ~ ' ~ ' ,  j '~=~'7 'ug/ ' ,  F ' ~ = O ' ~ V ' ~ - O ' V ~ .  (15b) 

The variational principle ~ f A p' d4x'= 0 leads to the equations of motion 

[ - i a ' V '  +g~o( Vo - - a k g k )  + f l ( m + g ~ a ' )  --(2k(Lk +Sk) ] q/=i80 q / ,  (16a) 

(0o - i D . L )  (0o - i~-L)  a ' -  A'a '+ m2a'+g~p ' = 0 ,  (16b) 

(0o - i ~ . L )  (0o - iD.L) 9 0 -  A '~°+  m E ~-o_ 0oB' =god'-°, (16c) 
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[ ~,k(O0 -- i ~ ' L )  - i (O'S),k] [6kr(Oo--i~'L)--i(~'S)kr] ~.I, A,~, .~mto V2 -, --O "B ' =godv,~' 

0o ~ ° - i ~ . L V ° +  0~ l~k=0 , 

~'U=(T-'V')U, y~=(T- l j 'v )  u , 

11 November 1993 

(16d) 

(16e) 

(16f) 

where L = r ' ×  - iV '  is the orbital angular momentum, and S =  (Sx, Sy, Sz) is the O (3) generator for o9-mesons 
with spin 1: 

(i °°) (!°i) (Z i i) S~= 0 i ,  Sy= 0 , S~= 0 . (17) 
1 O i 0 0 

The above results can also be derived from the Lagrangian density in the laboratory frame by the following 
replacements: 

~u=~', a-.a' ,  Vu-~V' ~, JUv-*)'~, y-*y', B- .B ' ,  O.~D'~=O'.+r'.=O'~+o9',~G,~, (18a) 

where o91~ is the spin connection defined by 

O91~ = -  ieukg-2k, O91~ = 0 ,  (18b) 

and G v is the spin matrix satisfied by 

G~jtT'= 0 , l , ,  , G,jq/=~o~ (G,jV)k=rhkVj--qjkV,. (18C) 

Following the same procedure as that in the laboratory frame, the canonical conjugate fields are given as 

H ' = i ~ ' * ,  H'~=ir'-iD.La',  / ' /o=B ' , l ~ k = F ' o k - i ~ " J ' ( L - t - S ) V  k . (19) 

Then the Hamiltonian density is expressed as 

,,~e'=~-f~.{~'* (L +s)~u'-lH" La'-i[l~o Lff'o + Dk( ~ktL + Sk~) 9~]}. (20) 

Thus, we described the relativastic many-body system in a three-dimensional rotating frame. We will next 
define the intrinsic frame in a triaxial deformed system. 

The Hamfltonian H '  in such a rotating frame is written as 

H ' = H - D . J ,  J=jD+L°+J°~, (21a,b) 

where the Hamiltonian Hxs given as 

H'=~of f 'd3x ', H = f ~ d 3 x ' ,  (21c) 

and jD, L ~, and j,o are the angular momentum of the spinor field, of the scalar cr-meson, and of the vector o9- 
meson, respectively: 

jD= f qff(L+S)qfd3x, ' L . = _ i  f i i .La,  d3x , ' jo~=_ i I [ n o L ~  ° + f f l k ( ~ k t L + S k t ) ~ t  ] d3x ," (21d) 

Then the equations of motion ( 16a)- (16e) m the rotating frame are rewritten by the canonical form 

t ¢ q , = [ q ; , H ' l p ,  f / , = [ H ; , H ' l p ,  

where q; and H;  are defined as 

q', = (~,', a', ~o, 9k) ,  /7; = (/7', ~q;, no,  P/~) 

Here the Poisson bracket [F, G]e is defined as 

(22a) 

(22b) 
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8/7', ( - ) I,I _ _  d3x,+ (22c) a/7', aPk aPk ' 

where 8F/Sq', and 8F/MI~ are the funct ional der ivat ive defined by 

8q~ - 0q~ - 0; . (22d) 

The phase factor ( - )m means that we use the minus ( - ) for an odd number and the plus ( + ) for an even 
number in the Grassmann variable q~. Pk is the conjugate momentum of the Euler angles Ok: [Ok, Pt]p=i~kt. 
Since the Hamiltonian is rotationally invariant, the physical results do not depend on the choice of  the rotating 
frame. This implies that the gauge invariance corresponds to the SO (3) symmetry. Thus, we need gauge-fixing 
conditions that determine the intrinsic frame. We will impose the constraints 

a k ~ 0  ( k = l ,  2, 3 ) ,  (23a) 

satisfying the conditions 

Det( [Jk, at]l,) # 0 ,  lock, at]p = 0 .  (23b,c) 

Since the Poisson bracket must be worked out before we make use of  the constraint equations, we use a different 
equality sign ~ from the usual =.  Consequently, we call these equations (23a) weak equations. We cannot 
uniquely determine the oek satisfying the conditions (23b) and (23c). At this point, we will choose the following 
constraints to determine the principal axes (PA) frame: 

ax=Q22-Q2_2, oty=QEl+Q2_l, OLz=Q21-Q2_I, ( 2 4 a )  

where QEM are the quadrupole tensors 

The consistency conditions for arbitrary time are 

i a k =  [ak, H ' ] p  = [Olk, HIp  --~t[Olk, J~]p = 0 .  (25) 

From these conditions, the angular velocities ~gk are determined as 

f2k= -- [H, a ~ ] l ~  1 , (26a) 

where ~ ~ ~ are the inverse matrix elements of [ Otk, Jr] P given by 

lOCk, J l ]p~  K) =C3kk, . (26b) 

Inserting (8a) into (26a), we obtain the relationship 

Vk.,O, = -- [H, az]p(0 ~ 1 (27) 

These differential equations give the connection between the Euler angles O, and the variables (q[,/-/;). Upon 
solving the differentml equations (27), one finds that the Euler angles O, are expressed by the variables 
(q;,/7',).  The Hamiltonian H'  of  eq. (21 a) then satisfies the consistency conditions. However, eq. (25 ) admits 
solutions for which a k ~  O. Such solutions involve the admixture of  spurious modes. In order to eliminate the 
spurious mode, for an arbitrary physical quantity F we define ff as follows: 

F = F +  [F, Og/]p~lZk '3  L [F, Xl]p ~'t~lOQc, Xk-~Jk--Ik, (28a,b) 

where Ik are the collective version of the angular momentum referred to in the intrinsic frame, and ~K ~ are the 
inverse matrix elements of  [Jk, c~t] p given by 
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[ Jk, allp gJg l =6kk' , (28C) 

and ff is the invariant part satisfying the relationship 

[if, Otk]p = 0 .  (29) 

Putting F =  Otk, the ~k satisfy ~k = 0 as the strong equality. The ak and Xk are second-class constraints. It is now 
convenient to introduce the Dxrac bracket defined as 

[F, G]D= [F, G]p + [F, a k l p q ~  ' [It, G]p + [F, XklP ~ 1  [at, Glp.  (30) 

Then the Dirac brackets of the variables (q,,/7,) become 

[ q', (Xo, x), Hj (Xo, y) ]D =~,jO(x-y)  + [q',, OtklP q)~' [Jl,/-/jla + [q;, JklP ~p~)l [al, Hj lP ,  (31a) 

[q;(xo, x), qj (Xo, y) ]D = [q;, Otk]p ~ [Jl, qj]P + [q',, JklP t~.l~l [al, qj]p, (31b) 

[H;(Xo, x), Hj(Xo, y) ID = [/1;, a~lp q'~' [Jr,//5lP + [//;, J~l~ ~ [at , / / j]p.  (31c) 

The Dirac brackets of the angular momentum are 

[Jk, JtlD = --iEktmJm. (32) 

Let us next perform the canonical quantization w~th constraints. Following the procedure of the Dirac quanti- 
zation [ 15 ], the quantization is carried out by the replacements 

[ ,  ]O--*[, ] ,  q;--*O;, H;--'I~I;, Jk--~3k, ak--~tik, (33a,b) 

where [~e, ~] means the commutation relation for the boson operator and the anti-commutation relation for 
the fermmn operator. Then eqs. ( 30 )-  (32) become 

[F, ~] = [/~, ~]v + [P, &k]P 4~? ~ [2t, ~]P + [P, 2k]P ~)~ [tit, d i p ,  (34a) 

[0;(Xo, x) , /~j  (Xo, Y) ] =t~v~(x-y) + [0;, tik]P~M 1 [fit, /~rj ] V .~. ITS;, ffk]P %1 [l~/, /its ]p , (34b) 

[0;(Xo, x),  Oj(Xo, y ) ] =  [0;, tig] P ~/,?~ [aTt, 0j]P + [0;, ]k]a ~./~1 [til, qJ]v, (34c) 

[/]r;(Xo, x ) , / ~  (Xo, y) ] = [~',, &k]a~ ~ [J~,/~]p + [/it;, Jk]P ~?~ [tit,/]r~] p. (34d) 

The Dlrac brackets of the angular momentum are 

[Jk, Z] = -- iEktmffm , (35) 

where [/~, ~]p means the operator that is obtained by the replacements (33a), (33b) after working out the 
Poisson bracket. From eqs. (34b)-(34d),  it is clear that 0', and/~', are not fermions or bosons. The commuta- 
tion relations (34b)-(34d) contain the deviations from the fermion and boson rules. Putting P=  0', and ~ =  
tikln eq. (34a), it is easily found that [q',, tik] = 0. This means that the tik play the role of constants of motion 
due to the constraints. The angular momentum algebra (35) obeys exactly the rntnus-stgn rules of the usual 
commutation relations which are well known as the commutation rules with respect to the rotating body-fixed 
frame. This is due to the non-bosonic commutation relations (34b)-(34d).  

In conclusion, we have presented a canonical formulation of three-dimensional rotation and intrinsic motion 
in a relatlwstic many-body system. In the moving frame, the technique is analogous to that of general relativity. 
Since the covanance of the Lagrangian was needed, we obtained the Lagrangian in the moving frame and de- 
rived the equatmns of motion. The intrinsic frame was determined by imposing constraints. Then, the motions 
xn the relativistic many-body system were completely separated into three-dimensional collective rotation and 
the intrinsic motion. It would be interesting to use a random phase approximation in our formulation, and to 
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compare it with the RPA in a non-relativistic formulation by Marshalek. This investigation is now in progress. 
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