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ABSTRACT

Effects of both the static and the dynamical triaxial
deformations on the signature dependence of B(M1) and B(E2) in
odd-A nuclei are studied by applying the RPA formalism based on
the rotating (cranked) shell model to odd-A nuclei. Typical
results of numerical calculation are presented for ‘65 Lu and
15THo, for which most detailed experimental data are available.

The main purpose of this talk is to discuss the effects of
triaxial deformations on properties of B(M1) and B(E2) between
high-spin, unique-parity states in odd-A nuclei. We shall consider
both static and dynamical deformations away from axial symmetry, By
“static triaxial deformations" we mean equilibrium shapes deviating
from axial symmetry, while we call vibrations in the gamma degree of
freedom (shape-fluctuations about the equilibrium point) "dynamical
triaxial deformations."

As was pointed out by Hamamoto and 3oﬁﬁmdmo=.pv.mv occurrence of
triaxial equilibrium shapes is expected to bring about a characteris-
tic dependence of B(E2; AI=-1) on the signature quantum number o of
the high-spin, unique-parity states in odd-A nuclei. The signature &
is, as is well known, related to the angular momentum I by I=o(+even.
On the other hand, the B(M1; AlI=-1) are expected to exhibit a strong
signature dependence already in the axial symmetric case, since they
are closely related to the signature splittings of the quasiparticle
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energies which generally occur in the rotating frame. As a matter of
fact, the B(M1) is also affected by the triaxial shapes, because the
signature splittings depend on the triaxiality parameter ww of the
rotating potential.

In fact, strong signature dependences of B(M1) and B(E2) have
been observed in the Al=-1 ﬁmw=MWﬂAo=m between high-spin,

data have been discussed by Hamamoto and Mottelson

unique-parity states in odd-A nuclei. These recent experimental

1),2) mainly by
means of the particle-rotor model.

The basic aim of our work is to develop, on the basis of the
rotating {cranked) shell model, a microscopic description of odd-A
high-spin states along the line parallel to the particle-rotor model.
Our model may be regarded as a particular version of the parti-
cle-rotor model, because the basis of the intrinsic state vectors is
determined by the rotating (cranked) shell model as a function of the
rotational frequency oc1oﬁ. Our model may also be regarded as an
extension of the traditional quasiparticle-vibration coupling models,

5) 6) into

1ike the Kisslinger-Sorensen's one”’ and the Soloviev's one,
the rotating frame of reference. One of the merits of our approach
js that it can be easily applied to high-spin states involving many
aligned quasiparticles, whereas in the conventional particle-rotor
model the treatment of the multi-nucleon-aligned bands becomes
increasingly difficult with increasing number of aligned nucleons.
On the other hand, our model has a limitation that the gamma vi-
brations and the wobbling modes are treated by the RPA within the
small amplitude approximation.
Our microscopic approach consists of the following four steps.

1) We construct a diabatic quasiparticle representation for a de-
formed potential which is uniformly rotating with angular frequency
Q;1oﬁ.
and is axially asymmetric in general. This step provides us with a
diabatic basis for the rotating (cranked) shell model. The diabatic

basis enables us to unambiguously specify individual rotational bands

The single-particle potential is of the Nilsson plus BCS form

in which internal structures of the quasiparticle state vectors
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smoothly change as functions of proﬁ.
2) The residual interaction between quasiparticles consists of the
monopole-pairing and the doubly-stretched quadrupole forces, and is
treated by means of the RPA in the rotating frame. This step deter-
mines the normal modes of vibration.

3) For odd-A nuclei, the couplings between the aligned quasiparticles
and the gamma vibrations in the rotating frame (see Fig.l) are

treated in the same manner as in the traditional quasiparticle-phonon

coupling aoamdm.mv.mv,
nllH \H\ 1 ’
N QH+|N.I \.—
y(a=1) Y(=0)
QA= +|._| \% Qo= +P \*
2 2
Fig.1 Elementary vertices of the couplings between the

quasiparticles (solid lines) and the gamma vibrations (wavy
Tines). The signatures o« of these modes are indicated.

The internal wave functions fxrAcpsoﬁmv are then written as superpo-
sitions of the quasiparticle Am+v and the gamma-vibrational Ax+v
excitations :

X)) = 3 00l 14>
M

H.M.L:m&?&pwxﬁ_ev + 2 ,av%ﬁowxm_%v W
where xw and xw represent the gamma vibrations with positive (x=0)
and negative (o{=1) signatures, respectively. These internal wave
functions are calculated for each value of stoﬁ. The gamma vi-
brations are taken into account up to the two-phonon states.

4) We extend the Marshalek's aﬂmmﬁsm:ﬁwv of the "Nambu-Goldstone

+ .
modes", [7" and [7, in the RPA (which reorient the angular momentum



468

of the collective rotation) to odd-A nuclei. Namely, we make the
following replacement

+ ~
= ==(3 P = (P
I~ Ig.mozlv»?l B, (L~ J- vv
(2)
" d 2 2 =< )
f nl_lwlpHoA/u..*.VW_v)i ,\.|Nh|.H|.oA HJ. 4M1v

where vax; denote the RPA mvusoxdam?ozm for the original
{microscopic) angular momentum operators, and H and ,H?_E represent
the total (external) and the n:mm;m«.SZm T:#mgm: angular
momenta, respectively. This ansatz is the most crucial point of our
approach, and corresponds to the fact that the state vectors are
constructed in a direct product form of the rotational and the
internal wave functions :

_lu._ml-\jHZ_ﬁAS«.Odvv = —H—/\:A\V® _\XJAEJAUV- ﬁwv

We adopt the Holstein-Primakoff-type boson representation for the
D-functions. Then, the rotational wave functions fzx\v can be

written in the subspace K =1 in the following 33:3
- _ L (I-I)® + I-I, 1
_._.HoHV g e AHlHou.\ (b)) #HDHo oV

(4)
where K is the projection on the x-axis which is identified with the
rotation axis.

By means of the above procedure, we obtain microscopic ex-
pressions for the intrinsic M1 and E2 operators as follows :

M1 transitions with Al=-1

~ ¢inY A (P ceff) ~ C3P)
F-i IAMhIva\be‘_ + (3 lun;umn

+ M. A &»?_V vA.H + tA.“..V X: vu (5)
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where i%v and mA ap) denote the orbital and the spin angular momenta
of quasiparticles. The effective g-factor of the RPA vacuum state,

9pppr €3N be written mmC
o P ;
mnv\yl <3.> de * (8, wpvﬂNlel\

(6)
where i and R are the angular momenta produced by the aligned
quasiparticles and .the collective rotations, respectively, and 9p
denotes the rotational g-factor. We see from the above expression
that B(M1) values would increase when the Atﬁw\mvm alignment takes
place, because 9RpA is reduced by this alignment effect.

E2 transitions with Al=-1

s (P ,,WQE ,w.z%v
/ cin kR 'y z

M@N- ;RlA@v <@, (2 7. Hov
- +1 ~ (P
F 2 A AR+ Q)

-3 %%3
3 _ AE

@+ ol raed |

3

2 (AXD ALK
" (7)

>?3
where o is quantized along the x-axis while onv:A 0,2) are
along d:m N|m§m. In Eq.(7), we have eliminated the operator 123
by using an approximate relation

e |_uwa aE | zap
NLM\ ~ .Jﬁu..\o.n z

’ (8)
which becomes exact in the axially symmetric limit. Here I is the
angular momentum of the initial state, and AE denotes the signature
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splitting of the quasiparticle energies associated with the _mqmm|g.
unique-parity orbit. We note that the phase factor A-HVH-Q is
positive (negative) for the favoured (unfavoured) states. This
alternation in sign brings about a characteristic signature depen-
dence of the B(E2; AlI=-1) when {Q,)#0. If the vibrational
contributions are neglected, this expression reduces to that of
Imamaoﬁouv when j=1/2, because the factor A-HVH-u_bm\ﬁcpsoﬂ_ becomes
(-1)1"Y2 gor 3172

Below we present typical results of numerical calculations for
d Hmuzo. for which most detailed experimental data are
available. In these calculations, we use the mmsmpwﬁmwdn triaxial
Lu where «quo is assumed.
The procedure for fixing other parameters entering in the calculation
is described in Ref.8).

Figure 2 shows the ratio B(Ml; I->1-1)/B(E2; I->1-2) for Lu
as a function of ﬁxvsoﬁ. The solid (broken) 1lines represent the
ratios calculated by (without) taking into account the couplings with
the gamma vibrations. The observed rotational bands may be roughly
classified into three groups according to the number of aligned
quasiparticles. The first group (15/2<1<29/2) involves the aligned
quasiparticle >u or mu. The second (35/2<1£51/2) involves the
quasiparticle configuration >n>:w= or mc»:w:. The third (I 259/2)
involves AABCD or BABCD Here, >c. wu and >=.m=. n:. c:

pnnnn pnnnn’
are the familiar notations denoting the aligned quasiparticle states

deformation parameters as in Hamamoto and Mottelson,
165
Aﬁ

except for
the five-quasiparticle aligned band o

165

associated with the susyp\m- and tﬁHw\m-o1a¢nm. respectively. Note
that we obtain the crossing between the second and the third
configurations at ﬁanoﬁ»u 0.4 MeV in good agreement with the
suggestion from the mxvmxﬁsmzﬁ.wv The interactions between the two
configurations are neglected in our calculation with the use of the
diabatic representation, although the experimental data indicate that
these are rather strong. We have selfconsistently calculated the
pairing gaps. The resulting neutron gap mV: is, for instance, 0.72
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Fig.2 The ratios B(M1l; I->I-1)/B{E2;1->1-2) plotted as a function
of wWyst. The solid triangles and the solid circles with error
bars denote the experimental data. The solid (broken) lines
represent the results of calculation with (without) taking into
account the couplings with the gamma-vibrations. The triaxial
deformation parameters are assumed to be 2, =18°,10° and 0° for
the one, three and five quasiparticle bands, respectively. Note
that our definition of the sign of &, is opposite to the Lund
convention, Other parameters of calculation are : 3=0.21,

=£) 20,7955, 0p=1.18 MeV, An=1.16 MeV for the
one-quasiparticle band, &p =1.18 MeV, &, =0.72 MeV for the
three-quasiparticle band, and &p =1.18 MeV, A.=0 for the
five-quasiparticle band. In the upper portion of this figure,
calculated values for the signature-splittings of the
quasiparticle energies are compared with the experimetnal ones.
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MeV at ﬁExoﬁuo.m MeV for the three-quasiparticle band and vanishes
for the five-quasiparticle band. We see in this figure that the
signature dependence is well vreproduced especially in the
highest-spin region. Another interesting feature of Fig.Z is that
the ratio increases when the Ju\w neutrons align. This trend is
caused by the decrease of the 9RpA- The calculated values of 9RPA
_m_wIO are 0.29~0.27 for the one-quasiparticle band, -0.12~-0.04 for the
67 0 three-quasiparticle band, and -0.05~0.04 for the five quasiparticle
1.0 N band. These values of 9RPA smoothly change as a function of 813
~o within individual bands. For the sake of reference, we mention that
the static triaxial deformations (which we calculated by using the
“isotropic velocity distribution no:&.f.o:..mJ are u\ouofcmo for
the one-quasiparticle band, w«o = 6°~11° for the three-quasiparticle
band, and y\oa 0° for the five quasiparticle band (Note that our
definition of the sign of %o is opposite to the Lund no:<m=§.o=.$v
These values of Xo smoothly change as a function of Esoﬁ within
individual bands.

Figure 3 shows the calculated values of B(E2; I>I-1) for

I~1-1)

BIE2

Q201115

Hmw:o.

2 It is seen that the signature dependence originating from the

0 0.1 02 0.3 0.4 couplings with the gamma-vibrations is stronger than that from the
‘38_.01?65 static triaxial deformations. Consequently, the B(E2; 1-1I-1) from

the favoured states (whose I=j+even) become always larger than those

from the unfavoured states (whose I=j+odd), in agreement with the

experimental amam.ﬁ On the other hand, the calculated signature

Fig.3 The calculated values of B(E2; I-5I-1) divided by dependence of B(E2) is smaller in magnitude than experimental data.

5/16 T ){eQ ?1,7/2,2,01-1,7/2>2 The three cases with . .
Md.rm_,mw_% OQWoAEBmm ( _K,uﬁmﬁo& are displayed. The solid Also, the large experimental <m:_mw£ of the ratio B(E2; I—>1-1)/B(E2;

?3“63 jzm:m m:oz the mmmczm with (without) jmmﬂzm the 151-2) could not be reproduced. In this connection, we note that
couplings with the gamma-vibrations into account. e deforma-
tion parameters used are (3=0.20, DuuH.mH and 4 =1.25 MeV. | the calculated values of the factor AE/hw . are 0.43, 0.08 and

-0.05 for y\ouHmo. 0° and -15°, respectively, at ﬁ€soduo.m MeV in
Hmwzo0 which are considerably smaller than unity. Thus, the
signature dependence originating from the static triaxial defor-
mations is significantly suppressed in this nucleus.

We have carried out a systematic analysis also for other odd-A
nuclei, and the results of calculation are available for further
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discussions.
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