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Abstract

The nuclear wobbling motion associated with the static triaxial deformation are discussed
based on a microscopic theory. Properties of the E2-transitions between the one-phonon
wobbling band and the yrast (vacuum) band are studied and their characteristic features are
suggested. '

1. Nuclear Wobbling Motion and E2-transition

The nuclear wobbling motion is a new elementary mode of excitations which is predicted
to appear at high-spin states” by analogy with the classical motion of the asymmetric top.
The lowest energy motion of the classical top is a uniform rotation around a certain principal
axis, which corresponds to the yrast states, and the excited motion is such that the angular
momentum vector in the body-fixed frame fluctuates, i.e., »wobbles” or ”precesses”, around
the main rotation axis. Note that the static triaxial deformation is necessary for such a three-
dimensional non-uniform rotation to be realized. Recent measurements of detailed properties
of the electromagnetic{EM) transitions rates revealed that the triaxial degrees of freedom,
either of static or of dynamic (vibrational) nature, do play an important role at high-spin
states. It is, therefore, interesting to ask how it appears at this stage.

rigid-rotor at high-spins is shown schemati- 'E? :
cally in Fig.1. States are classified into two ﬂ y .

7 3-wobbling
“ o 2-wobbling
~~ 1-wobbling
yrast

A band structure expected for the {riazial

sequences, the "horizontal” and ”vertical” ex-
citations, and their slopes are connected to
the largest and the smallest moment of iner-
tia, respectively. Members of the horizontal
sequence are connected by the stretched (A =
+2) E2-transitions which is characteristic to

the usual collective rotation around the axis - s

of largest moment of inertia. The vertical . .
' Fig.1. A schematic figure of the band

i ) structure expected from the triaxial
rotation around the axes other than the main rigid-rotor.

sequence is generated by superimposing the

rotation and can be regarded as multipole ex-
citations of the AJ = %1 (signature a = 1) "wobbling phonon”.

Study of such a genuine three-dimensional rotational motion is important because it is
related to fundainental questions: In what extent the nucleus behaves as a ”rotor”?, or how
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the "intrinsic” (body-fixed) frame is defined? The definition is highly non-trivial in the
case of general rotations around three spatial axes since the underlying nucleonic motions
and, therefore, the selfconsistent deformation are strongly affected by the rotational motion
in the many-body system like atomic nuclei. The dynamical fluctuations of the angular
momentum vector in the intrinsic frame is, in general, a large amplitude motion. Such a
general case has been studied in Refs.”” by using the time-dependent variational method
with a proper definition of the intrinsic frame. Unfortunately the results of Refs.”" are rather
complicated and it is difficult to understand the essential property of the wobbling motion.
In the yrast region such a genuine three-dimensional rotational motion is expected to be
of small amplitude, and a fully microscopic treatment is possible within the random phase
approximation (RPA).‘) Then the wobbling mode is described as a kind of "vibration”, or
the wobbling phonon, i.e., the quantized precession of the angular momentum vector. Here
we discuss such a relatively simple case and concentrate on the 1-wobbling band in Fig.1.

Since various kinds of rotational bands, both of collective and of single-particle nature,
are observed, it is difficult to identify the wobbling band among them only from the energy
spectira. The information of the electromagnetic transitions, especially the B(E2) which
sensitively reflects the collective properties, is important in this respect. For the general
band structure shown in Fig.1, the B(E2)ar=4+2 of the horizontal transitions are related
to the static deformation around the main rotation-axis, or the cranking-axis (z-axis), as
usual. The B(E2)A1=11-‘~o‘f the vertical transitions are determined by the electro-magnetic
properties of the wobbling phonon and reflect the effect of dynamical fluctuations of the
angular momentum vector.
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Fig.2. An analogy between the Al = +1 M1-transitions for the quasiparticle band
and the AT = 1 E2-transitions for the wobbling band.
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Within the lowest order approximation in the 1/I—expansmn,) E2-transition rate is
expressed as

BB faress ~ (1@ + Q)2 (1)

where QS{) (K =1,2) is the signature-coupled quadrupole operator (quantized with respect
to the z-axis). Now the analogy to the case of interband M 1-transitions between the favoured
and unfavoured quasiparticle bands in odd nuclei, are quite obvious: The effects of the
rotation and the triaxial deformation make both the K=1 and 2 components of quadrupole
transitions non-vanishing (K-mixing) and may cause characteristic staggering in AT = +1
E2-trdnsitions between the yrast and the wobbling band, see Fig.2.

2 A Microscopic Treatment:

It is interesting to see how the rotor-picture appears from the microscopic v1ewpomt > The
starting point of the microscopic description of the wobbling motion is the cranked mean-field
approximation followed by the time-dependent Hartree-Bogoliubov (TDHB) method in the
uniform-rotating(UR) fraine In the small amplitude limit (RPA) the signature a = 0 (even-I
transfer) and @ = 1 (odd-I transfer) modes decouple and the wobbling motion belongs to the
latter.

Assuming the quadrupole-field as a main deformation component, the time-dependent
single-particle hamiltonian in the presence of the wobbling motion is written as

hUR(t) = hdef - QJy — KRy Qy (t)Qy - Ky Qz(t)Qz' (2)

Here Q is the cranking frequency, the @; (i = y,2) is a non-diagonal component of the
quadrupole tensor, @; = 334 (252x)a (i, J, k=cyclic), and Q;(t) is its expectation value with
respect to the corresponding UR-frame TDHB state. Note that the deformation fields in
eq.(2), @, QSr;:)1 and iQ, x Qg{_z)z (cf. eq.(1)), so that they correspond to the dynamical
fluctuation of the triaxiality. If Q;(t) < a;, with «; being the static deformation, i.e., the
::l(zf —22),), it is possible to make a
time-dependent coordinate transformation to the body-fixed or the principal-axis(PA) frame
which is introduced in such a way as the shape fluctuation disappears, Q¥ 4(t) = 07" Then
the three-dimensional nature of the rotation shows up in this new coordinate frame and the
TDHB hamiltonian now takes the form,

expectation value of the diagonal component, a; = (3

hPA(t) = hdef - QJ:: - Qy(t)Jy - Q,(t)J,.eq('&)

Namely, the angular frequency vector, 2(t), or the angular momentum vector, (J)pa(?),
wobbles around the cranking z-axis (note Q,(t) ~ Q@ and (J,)pa(t) = (J,) = I in the
RPA order). After the quantization the time-dependences of the physical quantities can be
expressed as linear combinations of those corresponding to the RPA normal-modes.
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Then the moment of inertia around the axes perpendicular to the cranking axis,
gt = (J;)(;‘i/ﬂgn) (i = y,z), for each n-th wobbling phonon state can be calculated”
full-microscopically without any macroscopic assumptions. Moreover, it can be shown that
the RPA-eigen value equation (and also the expressions of E2-transition matrix elements)
in the UR-frame is transformed to the well-known ”wobbling equation” " in terms of there
moments of inertia, 7, = (J»)/Q, J5f? and J£f/ (and the static deformations, o, oy and
a,). Note that any physical observables in the PA-frame can be obtained uniquely from the
RPA-phonon amplitudes which are calculated in a usual manner in the UR-frame.

An example of calculations for the wobbling mode excited on top of the s-band of 18204 are
shown in Fig.3, in which staggering between AI = 41 and AI = —1 B(E2) is apparent. Note
that this characteristic feature of the transition amplitude are connected to the dynamical
fluctuation of the angular momentum vector in the PA-frame, or (j,,,j;”,f;”), as is
discussed above. The microscopic calculation predicts” that these moments of inertia change
from ”axially symmetric like” to ”triaxial like” even though the mean-field parameters are
kept constant. Furthermore, the predicted dependence of these inertia on the triaxiality
parameter is quite different from one expected in the macroscopic models like the rigid-body

or the irrotational-flow.”’

3. Discussions
In this conference an interesting possibility of the "tilted cranking” bands is discussed, )
where the direction of the angular momentum vector in the intrinsic frame deviates from the
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Fig.3. An example of the microscopic RPA calculation for the wobbling mode
excited on top of the s-band of 1¥20s. The transition amplitudes (left panel) and
B(E2)ar=+1 (right panel) are shown as functions of the rotational frequency.
The calculational procedure is the same as Ref.” but with using the RPA
equation wlhere the Nambu-Goldstone mode is explicitly decoupled.
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principal axes but still the rotation is uniform, i.e., @ || (J})p4. Such a motion is not allowed
in the classical-top, thus, is not the same thing as the wobbling motion. It is, however,
similar to the wobbling in the sense that both reflect the three-dimensional nature of the
nuclear rotational motion. In fact the strong coupling bands based on the high-K isomers
systematically observed in the H f — W region can be regard as a special case of the wobbling
motion, called the "precession”, ) i.e., the case where only the vertical sequences in Fig.1 are
present (the horizontal sequences correspond to the rotation around the symmetry-axis and
are forbidden in the quantal systems).

At least up to now, there are no definite experimental data which indicate the existence of
the nuclear wobbling motions. In order to identify the wobbling band we suggest to look for
the continuation of odd-I sequence (a = 1) of the 7-band after the back-bending, i.e., excited
on top of the s-band where sizable static triaxiality is sometimes predicted, in even-even
) This is because the wobbling mode is
closely related to the dynamical fluctuation of triaxiality as is discussed in §2. In this respect

s o . . 5,9
nuclei according to our theoretical calculations.

the band in 1320s’” may be a possible candidate, for which the calculation in Fig.3 has been
done” Recently it is predicted*” that the coupling of the wobbling mode to the quasiparticle
orbits leads the signature-inversion of routhians in odd 7 < 0 nuclei, which is observed in
e.g. *"Tm and is difficult to explain in the simple cranking model. This ,"p,n example which
indicates an importance of the wobbling motion in odd nuclei. !

The characteristic staggering of B(E2)ar=x1 as is shown in Fig.3 may be an important
factor for the identification. This staggering is rather general and has been observed in
the v-vibrational bands at low-spin Y though the staggering is not so pronounced because

Q(;) < Q({) in this case (cf. eq.(1)). There is a definite phase rule between the RPA
amplitudes of Q(z_) and QE—) for the triaxial deformation® and, for example, B(E2)ar=41 >
(<) B(E2)ar=-1 for 0 > 9 > —60° (7 > 0) so that the way of staggering depends on the sign
of 4. Although such transitions are too weak and their measurements are not yet available,
we hope that the new generation 4= crystal ball spectrometers make it possible in near future.
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