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COHERENT EFFECTS OF STATIC AND DYNAMIC TRIAXIALITIES
ON B(E2: AI =1)

MASAYUKI MATSUZAKI
Institute of Physics, University of Tsukuba
Ibaraki 305, Japan

ABSTRACT

The signature dependence of B(E2 : I — I—1) in rotat-
ing odd-A nuclei brought about by static and dynamic triaxial
deformations is studied by means of the quasiparticle-vibration
coupling approach based on the RPA in a rotating frame. Af
ter presenting two kinds of phase rules of the staggering as a
function of spin, their competition is discussed.

1. INTRODUCTION

Excited quasiparticles as well as collective rotation polarize the nuclear
shape. This polarization effect has mainly been discussed in terms of static
deformations: 8, v, € and so on. Although the existence of beta vibration
in axially deformed nuclei is recognized, gamma vibration and static triaxial
deformation have often been treated as conflicting concepts. But, needless to
say, they should be taken into account simultaneously from the theoretical point
of view. After both were considered, we can make a judgment whether one of

them is negligible or both are important.

We proposed in ref.1) such a framework that both can be taken into
consideration at the same time and have been studying various quantities in
rotating odd-A nuclei: energy spectra, B(M1) and B(E2) values and mixing
ratios. As for energy spectra and B(M1:1 — I —1)/B(E2:I — I — 2) values,
rich information is available. In contrast, data of B(E2 : I — I — 1) are limited

although they are expected to carry more direct knowledge of triaxiality.




In sect.2, we discuss the signature dependence of B(E2 : I — I—1) stem-
ming from the static triaxial deformation of rotating potentials and the relation
to the particle-rotor model result. In sect.3, the effect of the gamma-vibrational
contribution is discussed paying attention to its shell-filling dependence. The
competition between the effects of static and dynamic triaxialities is studied nu-

merically in sect.4. Summary is given in sect.5.

2. SIGNATURE DEPENDENCE OF E2 MATRIX ELEMENTS
DUE TO STATIC TRIAXIAL DEFORMATION

The effective principal-axis (PA) frame operator for E2(AI = 1) tran-

sitions consists of three parts, the rotational part, the vibrational part and the

odd-quasiparticle part:

QLM =@, + @My QL@ . (1)

The contribution of the last term is much smaller than that of others. The

concrete form of the rotational part is

glap) i &%E M%v

a. N
QL0 = Vi<l > <@l (25— Tt L @)

where @' | is quantized along the  (cranking) axis while < Omm_.v > (K =0,2)
along the z axis, and I denotes the angular momentum of the even-even core.
In the cranking model, a triaxially deformed core (potential) rotates around a
principal axis and then its main effect on E2(AI = 1) matrix elements appears
via < @wi > in eq.(2). An identity derived from the commutator between the

cranking Hamiltonian

B = \«mvv - MU wa@ﬁ& — hwpotJy va
K=0,2
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and J,,
—Ae (f] J, |[u) = hwsor (£] i, [0) + 20 (£] Q47 [u) (4)

with the signature splitting Ae’ = e}, —ef, assures a definite phase relation between
the single-quasiparticle matrix elements of J, and iJy in eq.(2) when the triaxial
parameter ay « siny(P°!) is small. Consequently the signature dependence due

to static triaxial deformation is determined by the sign of < Omi >, Le., of v as
B(E2:f - u)ZB(E2:u—1) for 720 (5)

where f and u stand for the favored and the unfavored states, respectively.
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Fig.1. The calculated .NWA.NM I — NIHV divided by the rotational values. The solid and broken
lines represent the results with and without taking into account the gamma-vibrational contri-
butions, respectively. Parameters used are m:uos =0.20, Dv =1.21MeV and A, =1.25MeV.
(From ref.3).)

In contrast, static triaxial deformation in the particle-rotor model is ac-
companied by the fluctuation of the rotational axis. This is the reason why the
signature dependence in a negative-gamma case in Hamamoto’s particle-rotor
calculation is inverted relative to the cranking prediction, eq.(5), when Q/I is
not small (see fig.8 of ref.2)). Here I and  denote the total spin and the an-

gular momentum projection onto the z axis, respectively. At least a part of this
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effect of the fluctuation can be taken into account by the coupling with gamma-
vibrational phonons as shown in fig.1; B(E2 : f — u)s are enhanced relative
to B(E2 : u — f)s both in v = +15° and —15° cases as in the particle-rotor
model result. This is supported by such a scenario that the gamma vibration

in rotating triaxial nuclei changes its character gradually to wobbling motion as

Wrot increases)—%).

3. SIGNATURE DEPENDENCE OF E2 MATRIX ELEMENTS
DUE TO DYNAMIC TRIAXIAL DEFORMATION

The vibrational part in eq.(1) is given by

QM) = M:uzkilv.cf_aﬁ N“Tv - TﬂibwL Xaoy} - (6)

RPA
Only the gamma-vibrational phonon in the negative-signature (» = ezp(—ira) =
—1) sector, N)HTV, is taken into account in the following. With the aid of the
relation,
i - -
QLHHAQM - qf vv ) (M
the matrix element can be written, in the first order with respect to the

quasiparticle-vibration coupling (QVC), as

(t-uw)
~ —{— wAamivE.w.E
(u = 1) 2 0 ®)
|N - - - - - —
T R AxM (T (11 Q1 Ju) £ x0T )2 (1106 v_svw :
where
T = @ X )], (K=12) (9)

is the transition amplitude associated with the gamma-vibrational phonon, and

hw,(_y and melv (K = 1,2) are the excitation energy of the phonon and the
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strength of the Q-Q interaction, respectively. The equilibrium shape is assumed
to be axially symmetric and the odd-quasiparticle term is neglected here for
simplicity. It is obvious from eq.(8) that the signature dependence due to gamma
vibration is determined by the relative sign between (f| J, |u) in the main term

and (f] lev |u) in the vibrational term.

The next task is to study this relative sign. The quadrupole operators
with » = —1 in the single-j shell model are represented by replacing the coordi-

nate = by the angular momentum 7 as follows:

Q7 =~ 2/3e03 10 1)
H (10
Q7 =2V3e03 U0 idy}

with {,} signifying an anticommutator, and

5 0

co = ”—lmﬂa ) AHHV

where qo is a constant with dimension [L?]. We now assume that J in eq.(10)
can be replaced by an aligned angular momentum when we deal with the lowest-

energy quasiparticle states. Using eq.(4) with ay = 0 we then obtain
Ae' (£ Q47 [u) = hwr (11Q57 [0) (12)

The relation (12) implies that (f] ©m|v_=v and (f] QML |u) have the same sign,
except when the signature inversion”) occurs, in high-j cases in which the single-
j approximation holds well. Accordingly we can state that the signature de-
pendence of B(E2) is determined by the relative sign between (f|J,|u) and
(1 Q7 u).

Assuming axial symmetry (a3 = 0), an identity

— A (f]id, |n) = hwor (1] T [0) + V300 (£] Q7 [u) (13)
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is derived from the commutator between h' and iJy, besides
—Ae ({] T, [u) = hwrot (] iy [u) . 4)

Using these identities,

(=) !
MO _ b (A )7 (14

(f| J; |u) B /\MQoa hwrot

is derived. Therefore we have obtained a phase rule of the signature dependence

due to gamma vibration:
B(E2:f —>u)SB(E2:u—f) for Ae'Zhwyr - (15)

Since Ae' decreases as the chemical potential A increases in a high-j shell, the

ratio B(E2 : f — u)/B(E2:u — {) also varies with X as shown in fig.2.
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Fig.2. The calculated ratio of B(E2 : I — I — 1) representing the signature dependence at
7 =0 given by the quasiparticle-vibration coupling (QVC) model as a function of Z. Parameters
used are m@o& =0.20 and Ap, = A, =1.0MeV. (From ref.8).)

The result shown in fig.2 is consistent with that of all the previous works:
i) When the Fermi surface lies at the mid nhy; /2 shell region, the signature split-
ting is smaller than the rotational frequency. In this case, the gamma-vibrational

contributions enhance B(E2 : f — u). This is the case discussed by Ikeda®) and
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in our previous works®)!). i) When the Fermi surface lies low in the xh;; /2
shell, the signature splitting is larger than the rotational frequency. In this case,

the gamma-vibrational contributions enhance B(E2 : u — f). This is the case

discussed by Onishi et al.!?)
4. COMPETITION BETWEEN THE EFFECTS OF STATIC
AND DYNAMIC TRIAXIAL DEFORMATIONS
The phase rules of the signature dependent staggering of B(E2 : I —
I — 1) in rotating odd-A nuclei as a function of spin due to static and dynamic

triaxialities have been discussed analytically and numerically in sects.2 and 3,

respectively. The next step is to study their competition in coexistent systems.
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Fig.3. Same as fig.2 but for oy #0. The cranking (CR) values are also shown by the broken lines.
(From ref.11).)

Numerical calculation was performed for 4(P°) = +10° and +£20° under
the same condition as the y(P°*) = ( case in sect.3. The result is presented in fig.3.
The broken lines in the figure indicate the results without the vibrational term

(see eq.(1)). The signature dependence of B(E2), i.e., the deviation of the ratio
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from unity, stems predominantly from the term proportional to < th > -Jy
in eq.(2). The phase rule (5), derived assuming small v, holds well except for

the positive-gamma cases of high-A nuclei in which the signature inversion takes

place.

The solid lines include the gamma-vibrational effects superimposed on
the cranking results. We here note that the phonons were constructed within the
RPA based on each triaxially deformed rotating mean field. For _.«Avoa_ = 10°,

the phase rule due to gamma vibration:
I\ it B(E2:f > u)2B(E2:u— 1) for A2 A (15"

derived using the first-order perturbation holds although A, varies depending
on 7. In contrast, the ratio is always smaller than unity for 4(Pot) = _20° while
it is larger than unity for y(P%%) = 420° except at the signature inversion region
and at Cs. In other words, the effect of static gamma deformation is stronger
than that of gamma vibration at _.x:uoa_ = 20°. The gero-point amplitude v,
associated with gamma vibration calculated at fiwy, = 0 and .«%oc = 0 is about
15° in these nuclei. According to it, we can conclude that the phase rule (15)
holds for the nuclei situated at the vibrational region, |y(P°))| < ;, whereas the

signature dependence is determined by the sign of 4(P°%) when _4?03_ is larger

than ;.

Static triaxial deformation v has been treated as an input parameter up
to now. But it depends on the shell-filling in general. Two kinds of standpoints
are possible for how to determine v in the QVC model. The first is such that the
polarization effect of the odd-quasiparticle can be taken into account by the equi-
librium shape of the even-even core and the coupling between the quasiparticle
moving in the potential with this shape and the vibration of the core around this
shape. This accords with the nuclear-field-theoretical approach. Then, negative-
gamma deformation is appropriate for one-quasiparticle bands because of the

collective rotation of the core while positive-gamma deformation is appropriate
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for the three-quasiparticle bands in the N = 90 isotones because the equilibrium

v of the s-bands of the even-even nuclei in this region is positive.

The second standpoint is such that the QVC calculation should be done
based on the equilibrium shape of the odd-mass system. Then, since the equilib-
rium v of the odd-mass system varies as

Ir- ¥$0 for AZ AL (16)

crit*
the cranking value will show

N et B(E2:f - 0)SB(E2:u—1) for AZ A, (17)
in consequence of the phase rule (5). The QVC contribution which shows the
phase rule (15') is superimposed on the cranking value. The cranking and QVC
effects, therefore, contribute in the opposite direction of each other at both ends
of high-j shells while they can be in phase at mid shell region depending on
Acric and AL, At the present stage, it is an open question which standpoint is

appropriate. This should be studied from the many-body theoretical view point.
5. SUMMARY

We have studied the signature dependence of B(E2 : I — I — 1) in ro-
tating odd-A nuclei due to static and dynamic triaxialities. In sect.2, the phase
rule of the staggering as a function of spin stemming from the static deforma-
tion has been presented; this rule holds not only in the cranking model but
also in the particle-rotor model when /I is small. When it is not small, the
fluctuation of the rotational axis in the particle-rotor model inverts the phase
of the staggering; this effect can be incorporated into the cranking description
by considering the quasiparticle-vibration coupling. The gamma-vibrational ef-
fect in axially symmetric nuclei has been discussed in sect.3. In particular, its

shell-filling dependence has been clarified analytically. In sect.4, the competition
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between the effects of static and dynamic triaxialities has been studied numeri-
cally, and it has been shown that the phase rule due to gamma vibration survives
when |7(P°%)| is smaller than the zero-point amplitude 7y. The principle how to
choose the appropriate v in the quasiparticle-vibration coupling approach has

also been mentioned.
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