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Abstrstz Signature-dependent effects of gamma vibration on properties of rotating odd-A nuclei are 
studied by means of the quasiparticle-vibration-coupling approach based on the cranking-plus-RPA 
formalism. In the first half of this paper, the signature dependence and the shell-filling dependence 
of both the quasiparticle-vibration-coupling wave function and of the E2 transitions in the y = 0 
case are discussed. The gamma-vibrational effect on B(E2: Z -) Z -2) is shown to be weaker than 
that on B(E2 : Z -f I - 1). In the second half, the vibrational effect on B(E2 : Z + Z - 1) in y Z 0 cases 
is shown to defeat the effect of the static gamma deformation of the rotating potential when y@‘) 
is smaller than the zero-point amplitude ‘ya. A prediction is given for the signature and the 
shelf-filling dependence of B(E2: Z + Z - 1) and for the sign change of E2/Ml mixing ratio in an 
experimentally accessible isotope chain, ‘59-‘69Yb. 

1. Introduction 

Excited quasiparticles as well as collective rotation can induce the shape change 
of nuclei. The shape polarization effect of quasiparticles on rotating cores is becoming 
recognized in terms of the shell correction method. In order to study the gamma 
degree of freedom in rotating nuclei further, its dynamical aspect should be con- 
sidered. It has been discussed mainly in the context of the signature dependence 
of level energies and B(M1: I + I - 1) values, about which rich experimental infor- 
mation is available. In contrast, data of B(E2 : I + I - 1) values are limited although 
they are expected to carry more direct knowledge of triaxiality. The first observation 
of strong signature dependence of B(E2: I + I - 1) was reported by Hagemann et 
al. “). Although this datum was revised later ‘), it stimulated the theoretical studies 
about the effects of static and dynamic triaxialities 3-1o). 

Among them, we discussed the phase rule of the signature dependence of 
B(E2 : I + I - 1) due to the static triaxial deformation of the rotating potential, and 
presented some numerical examples on the basis of the cranking picture in refs. ‘*‘). 
In ref. 9), to which we will refer henceforth as paper (I), we clarified the phase rule 
of the signature dependence due to the gamma vibration around an axially symmetric 
shape and its shell-filling dependence, both analytically and numerically. This work 
was motivated by the result in ref. ‘) that the effect of gamma vibration is stronger 
than that of the static gamma deformation of rotating potential. 

037$-9474/90/$03.50 0 1990 - Elsevier Science Publishers B.V. (North-Holland) 



M. Matsuzaki / Signature-dependent effects (II) 549 

The purpose of the present paper is to extend the study on the vibrational effect 
on B( E2 : I + I - 1) in the y = 0 case developed in paper (I) to two directions: firstly, 
to other quantities mainly in the y = 0 case, and secondly, to B(E2 : I + I - 1) in 
axially asymmetric cases. 

This paper consists of two parts. The first part includes sects. 2 and 3. In sect. 2, 
detailed properties of quasiparticle-vibration-coupling wave functions are discussed. 
The coupling schemes in various models are also mentioned. In sect. 3, the gamma- 
vibrational effect on B( E2 : I + I - 2) in axially symmetric nuclei is discussed compar- 
ing with that on B(E2 : I + I - 1). Sects. 4 and 5 correspond to the second part. Sect. 
4 is the core of the present paper. Here the competition of the static and dynamic 
deformations is investigated by evaluating the signature dependence of B( E2 : I + I - 

1) values. The meaning of y in the present approach is also discussed in this section. 
The competition mentioned above and the sign change of E2/Ml mixing ratio due 
to the coupling with gamma vibration in an experimentally accessible isotope chain 
are studied in sect. 5. Sect. 6 is devoted to concluding remarks. 

2. Properties of quasiparticle-vibration-coupling wave functions 

The quasiparticle-vibration-coupling hamiltonian in the cranking-plus-RPA for- 
malism can be derived from the pairing plus doubly-stretched quadrupole interaction 
in rotating frame, and takes the form:* 

+ c n~-‘(i@)(x~(_)u;u, +X,(_)u;u,) . (2-l) 
Pfi 

Here u: and uz denote quasiparticles with the signature quantum number r = -i 

and +i, respectively, while XL,,, denotes gamma-vibrational phonons with r = f 1. 
The coupling vertices are also classified by I = l l, and are given by** 

Al”&)= - c KK 
‘+‘fg)@ypLy) ) 

K=O,l,Z 

A;-‘(@) = - 1 K(K’f~‘&)(~~), 

K=1,2 

A;-‘&)= - C K(K+&)&‘( Z+) , (2.2) 
K=1,2 

where the force strengths KT) are positive and the transition amplitudes are defined as 

W= [Wr X;(*)lRPA, (2.3) 

with @j’s denoting the doubly-stretched quadrupole operators ‘l). 

* The double prime attached to 1 denotes that when the component (pv) is summed its signature 

partner (PS) should also be summed. 

l * The contributions from the residual pairing interaction in the r=+l sector are omitted in this 
expression for simplicity. 
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When the single-j approximation holds well and j + t = even (odd), usually the 
states with r = +i (-i) lie lower in energy than their signature partners and are 
called the favored (f) states. Their partners are called the unfavored (u) states. As 
shown in paper (I), the vertices A I-’ can be rewritten in terms of If) and Iu) utilizing 
the symmetry property r’) 

&f(JU~) = -(-l)KQ(K)(Q&). (2.4) 

For those concerning the lowest-energy quasiparticle state with each signature, we 
adopt the notation: 

A\?(yf,u) = -(KI-)~~-)(fldl-)IU)+K:-)~~-)(fl6~-)IU)), 

A$-‘(yu, f) = -(K(t-)~I-)(fl~l-)IU)--KI-f~~-)(ft~1-)IU)). (2.5) 

The former denotes the coupling strength between Iu} and X’,c-,lf} while the latter 
denotes the one between If) and X:,_,lu). The vertices Al” concerning the lowest- 
energy states are given by 

A$+‘(rf, f) = - c &‘~‘K”(fl&‘lfJ, 
K=0,2 

(2.6) 

Here we note that the diagonal matrix elements of Q1 *“+‘vanish due to the antihermitic- 
ity. The K = 1 term in eq. (2.5) and the K = 0 term in eq. (2.6) originate from the 
Coriolis perturbation to gamma vibrations in the first and second order, respectively. 
Therefore, we can expect that If!-‘/ ?$-‘I P 1 I@,+)/ ?$“‘I. For example, the left-hand 
side is 0.33-0.40 while the right-hand side is 0.06-0.12 in the numerical calculation 
presented later. 

Gamma vibrations with r = +l and -1, which we call the y(f) and y( -) 
vibrations henceforth, contribute to B(E2)‘s with AI = 2 and 1, respectively, in the 
first order (see sect. 3). Referring to this fact, we concentrate our attention on the 
first-order perturbation wave functions with respect to the quasiparticle-vibration- 
coupling hamiltonian (2.1) in the following. They are given by 

1J.Q = aS#J)+ &;‘Q:X:J&+ s(;tWZ,+,I& f 

lo = a:t~)+6~-)a~X“,(-,lcp)+ ~r+wG+w, (2.7) 

with 

s(-) = A$-‘(rf, 4 
” 

AE - fiou~_~ ’ 
8(+) _ &%u, 4 

” - 

-f%(+) 
f 

(2.8) 
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Here 14) denotes the yrast configuration of the even-even core and AE = E, - Ef is 
the signature splitting of quasiparticle routhian. 

The signature dependence of the mixing amplitudes of the y( - ) vibrational states, 
6L-j and Si-‘, is determined by combining the phase rule of (f l&‘lu>‘s and that of 
f$%. We showed in paper (I) that (fl@-‘lu) and (f1Q$-‘lu) have the same sign in 
most cases under the single-j approximation and under such an assumption that 
the aligned angular momentum of the odd quasiparticle is a constant. The relative 
sign between fi-) and fi-;’ associated with the lowest-energy collective mode was 
shown to be a function of gamma deformation I*). Here we should emphasize that 
this rule holds when the shape of the potential and that of the density are consistent. 
This means that f$-‘/f$-’ is positive irrespective of input yCpot) values for one- 
quasiparticle bands since the self-consistent gamma defo~ation of zero-quasipar- 
title cores is negative (see sect. 4). As a result, ~!-‘(f[&-‘lu> and Z?$-‘(f/&-‘/u) in 
both relations of eq. (2.5) have the same sign, and then the y( -) vibration mixes 
strongly to the unfavored states. 

This result corresponds to the tilted coupling scheme pointed out by 
Hamamoto 13): in the unfavored states of triaxially-deformed nuclei with spins not 
so high, the rotation axis deviates from principal axes. This correspondence is 
brought by the idea that the wobbling motion is the high-spin continuation of the 
y( - ) vibration ‘4,12). The result that the y( - ) vibration makes B(E2 : f-, u) larger 
than B(E2 : u + f) in both y = 115’ cases 7, like in a particle-rotor calculation ‘) 
supports the above correspondence (see sect. 4). 

The situation is simpler for the positive-signature amplitudes, 8:) and a!+‘. Since 
I ?$,+‘I F+ I FL+‘1 holds for the y( + ) vibrational phonons, the difference between 8:’ 
and 8p) is determined primarily by the difference between (u/Q$+‘lu> and (f@$+)lO. 
A numerical example for ‘59Tm can be found in table 1 of ref. “); in this case the 
proton Fermi surface lies around E 7,2 and accordingly the y( -t-) vibrational com- 
ponent is larger in the favored one-quasiparticle states than in the unfavored states 
(see the following discussion about the shell-filling dependence). 

Next we discuss the shell-filling {or chemical potential A) dependence of signature- 
dependent properties of the quasipa~icle-vibration-coupling wave functions pre- 
sented above. In the following, we assume that the shell-filling dependence of 
collective properties is weak. According to the discussion in paper (I), the shell-filling 
dependence of ~3:~) and Sj-’ is determined by the relation: 

(2.9) 

which holds exactly in axially symmetric nuclei. Here a0 is a quadrupole deformation 
parameter of rotating potential: 

h’ = hsph - a&&+’ - hw,,.T, . (2.10) 

As shown in fig. 1 of paper (I), (flQ’,-‘/u) and {f/Q!-‘h.t} (and the corresponding 
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doubly-stretched quantities at the same time) change their signs* around A - Ed,* 
according to the A-dependent change in the magnitude of AE in eq. (2.9). The signs 
of Sk-;’ and 6 $-’ change around h - ~~~ z consequently. The positive-signature ampli- 
tudes SC,+) and S$+’ are also governed by eq. (2.9) through the relation i5): 

VlQi+‘lf> = -(ulQi+‘(u) = -(f (J, (u)(f (Q$-‘(u) (2.11) 

(see fig. 1 of ref. 15)), because (flQ$-‘1 u s ) h ows similar shell-filling dependence to 
that of (fjQ$-‘/u> (see fig. 1 of paper (I)). We note here that the relation (2.11) plays 
an important role for discussing the shell-filling dependence of the signature inver- 
sion in quasiparticle energy I’). 

A numerical example of the shell-filling dependent behavior of the wave function 
is shown in fig. 1. Quantities in the r = +l and -1 sectors are placed at the left and 
right, respectively. These are calculated adopting the same parameter set as that 
used in figs. 1-3 of paper (I): fizo, = 0.2 MeV, p(pot) = 0.2, yCpo’) = 0, A, = A, = 
1.0 MeV and the chemical potentials determined so as to give N =90 and each 
2(=55-71) at h~,,~= 0. The RPA calculation was performed in a model space 
consisting of N,,,, = 4-6 for neutrons and N,,, = 3-5 for protons. The quadrupole 
and pairing force strengths were chosen so as to reproduce hwY(*) = 0.8 MeV, 
txw, = 1.0 MeV, #&G(*t) = 0 and the above A, = A,, at Aw,t = 0. In the top panel, 
single-quasiparticle matrix elements, diagonal (f/Q$+‘\f> and (ulQ$+‘lu) in the r = +l 
sector and (f IQ~-‘lu> and (f\Q$-‘lu) between the signature partners in the r = -1 
sector, are shown. Their shell-filling dependence is determined by eqs. (2.9) and 
(2.11) as discussed in paper (I) and ref. Is). The perturbation amplitudes are shown 
in the middle. Positive-signature amplitudes a!+“’ and 8:’ are connected directly to 
the matrix elements of Qr’. In the t = -1 sector, K = 1 and 2 terms contribute 
constructively to 8’;’ and destructively to Si-‘. In addition to the terms in eq. (2.7), 
H,,,,r(y) (eq. (2.1)) brings other one-phonon (y( +) and y( -)) components in the 
lowest-energy quasiparticle-vibration coupling states. The probabilities of one- y( + ) 
and one-y( -) components in these states with r = +i (f) and r = -i (u) are shown 
in the bottom panel. This is a result of diagonalization. Fig, 1 illustrates that the 
behavior of the probabilities is determined predominantly by the main amplitudes 
in the middle panel. 

The sum of the mixing probabilities of the y( +) and y( -) components is larger 
in the unfavored state in the low-A region while it is larger in the favored state in 
the high-h region. The result for the high-h cases coincides with that of a particle- 
rotor-model calculation for “‘HO performed by Ikeda “f . In the interacting boson- 
fermion model, the exchange interaction makes both the y( + ) and y( - ) components 

l In actual calculations, the overall signs of matrix elements are indefinite except diagonal ones like 

(f(Qi+)lf) (see eq. (2.11)); only the relative signs between them, between (f(Q(,-j/u) and (f(Jz\u) for 

instance, are physical. Since the absolute value of (f~~~~u)=(u~~~~f) indicates the effective K-value, 

henceforth we regard this matrix element as positive. Then the signs of others are determined uniquely 

referring to it. The situation is similar for the transition amplitudes ?$’ made up from two-quasiparticle 

matrix elements; we regard ?‘$*’ as positive. 
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Cs La Pr Pm Eu Tb Ho Tm Lu Cs La Pr Pm Eu Tb Ho Tm Lu 

Fig. 1. single-quasipa~icle matrix elements of quadrupoie operator (top panel), the first-order mixing 
amplitudes of the lowest-energy gamma-vibrational components (middle panel), and the total mixing 
probabilities of one-r(+) and one-y{ -) components obtained by diagonalization including up to 
two-phonon states (bottom panel) calculated at ho,,, = 0.2 MeV and y (w) = 0. Quantities in the r = +l 
(-1) sector are placed at the left (right). The overall sign of matrix elements was chosen so that (flJ,lu) 
and f$*’ were positive. Other parameters are /3 (Po’) = 0.2, A,, = A, = 1 .O MeV, and the chemical potentials 
determined so as to give N =90 and each 2 at hw,,= 0. The force strengths of the pairing plus 
doubly-sketched quadrupofe interaction were chosen so as to give the above A, = A,, T%+,~*~ = 0.8 MeV, 

ho, = 1.0 MeV and hail = 0 at ho,, = 0. The top left figure is the same as fig. 2 of ref. Is). 

in the unfavored states larger when the core bears the O(6) character 16). As for the 
y( -) components, the tendency is the same as our quasipa~i~le-vibration-coupling 
wave function as well as that of the signature-dependent effect on B(E2 : I + I - 1) 
qualitatively*. On the other hand, the signature dependence of the mixing amplitudes 
of the y( 4 ) components is opposite to our result, although the effect on the signature 
dependence of B(E2: Z -3, Z - 2) is similar. (See sect. 3 for the selection rule in our 
model.) 

Before closing this section, we mention briefly the influence of static gamma 
deformation on properties of the quasiparticle-vibration-coupling wave function. 
We examined ytpot) = *lO” and 120”. Resulting A-dependence is similar to that in 
the y = 0 case qualitatively but the structure shifts to the high-h (low-h) side when 

* Unusually strong exchange interaction is necessary in order to make B(E2: f-u) larger than 
B(E2 : u- !J in realistic calculations; r5’Ho case for example *‘). 
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negative (positive) gamma deformation is introduced. This is a consequence of the 
y-dependence of AE in eq. (2.9); the zeros of the matrix elements of Qi-’ and Qy’ 
shift depending on AE.* The effect on B(E2 : I + I - 1) in y # 0 cases will be discussed 
quantitatively in sect. 4. 

3. Gamma-vibrational effects on B(E2)‘s in axially symmetric nuclei 

The effective principal-axis (PA) frame operators, which act on quasiparticle- 
vibration-coupling wave functions, for E2 (AI = 1,2) transitions are given by 

f~",'"'= J ;{ _~~Qb")~+(Q~')(2~+~)}+~Q";'b'ifQri:p), 
0 0 

Q”rA’ = (QL2) f QL’Fb)+ Q<;‘,““’ , (3.1) 

where the operators QL (CL = -1, -2) are quantized along the x-axis and are 

connected to QK (*j (K = 0, 1,2) as 

f Q:, = &Q\-' - Q$-'f , 

Q’*=d$( -;&Qr’+ Q;+'-;Q$+') . (3.2) 

The vibrational terms are given by 

; Q”rb’= 4 n 

X”,_,,f QL] [ 
RPA 

X:,-,- Xr.,-,,f QI., 

Q!J2”b’=C {lXn(+), Q!-zIRPA-C(+~-C-C(+), QIiL.&(-)}. 
n 

(3.3) 

The gamma-vibrational contributions to E2 matrix elements, picked up by these 
terms, appear in the first order with respect to the quasiparticle-vibration coupling. 
This fact makes discussion transparent in comparison with the case of routhians 
and Ml matrix elements**. The E2 (Al = 1) matrix elements between the signature 

partners are given by ‘) 

* The qualitative relation between AE and the sign of (f IQ{-)/u)/(f I&(u) is valid also in y f 0 cases 
although eq. (2.9) is not exact in such cases. 

** The first-order con~butions also exist in Ml matrix elements. But they are smaller than the 
second-order ones because of the difference in the multipolarity. 
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(3.4) 

(3.5) 

with 

of=Jo:-(1-6iX)0;0, (i = x, Y, z) , 

w. = 41 A-“3 MeV/ A, 0.6) 

and lo being the angular momentum of the even-even core. The plus-minus sign 

in front of xl-’ in eq. (3.4) has two consequences: first, it indicates that the (f-a u) 
matrix element is larger (smaller) than the (u + f) at high (low) A because the sign 
of {f/Q:-‘[u) is the opposite of (same as) that of (fIJ,lu) as shown in the top panel 
of fig. 1. Secondly, since (f 1 Qf-‘/u> and (f 1 @!-‘I u ) h ave the same sign in most cases 8,9) 
(see the top panel of fig. l), the K = 1 and 2 components contribute constructively 
in the (f+ u) while destructively in the (u -+ f). 

The signature dependence of E2 (Al = 2) matrix elements due to the y( +) 
vibration can be understood in a similar way. The first-order expression is given by 

((rIQL’,P*‘[r)) = -@{(&(Qh+‘)+( or’)) f 26j+‘(&T$++‘+ T$+‘) 

+ (JSM&+:‘lr) + (rlOi+)lr))I , (3.7) 

where r = f or II. Assuming ( ?$+‘I > I ?$+‘I (and ( 1’$+‘I % I T$+‘/ at the same time) and 
r- o, - wi, the vibrational term can be approximated by 

with 

cw 

Therefore, the signature dependence of B(E2 : I -, I - 2) due to the y( +) vibration 
is determined mainly by the deference between (u~Q~‘/u> and (f l@“lf), as it is the 
case for the wave function (see fig. 1). Moreover, we can see from the expression 
(3.8) that the y( +) vibration enhances (reduces} the B(E2) when (rlQ$+)lr) is positive 
(negative) since the first term in the braces in eq. (3.7) is positive around y = 0. 
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In both the Al = 1 and 2 matrix elements, the vibrational terms contribute with 
the same sign as the corresponding odd-quasipa~icle terms. This is consistent with 
the concept of the polarization charge, associated with gamma vibrations in the 
present case, We should note here that e:T) = 2xg’( Tg’)2/ horCi) depends on K 
and r= *l. The calculated values of et$) at hwrot= 0.2 MeV are 14-21 whereas 
those of ei$) stemming from the rotational K-mixing in the y( -) vibration are 
around 2. In ref. 6), eeff (= epol+ 1) = 0.28(&f{ jlr2/j) was used as an input parameter. 
Assuming QO/( jlr*(j) - O(Z), this value agrees with our calculated ones. 

The signature dependence of B(E2)‘s calculated under the same condition as fig. 
1 is shown as a function of 2 in the upper panel of fig. 2. This is a result of the 
diagonalization. In the expression (3-l), 1, = f - ix and I= $? were assumed and ix 
was calculated at the initial state of each nucleus. Their Z-dependence can be 
understood from the behavior of the single-quasipa~icle quadrupole matrix elements 
shown in fig. 1. Note here that the weak signature dependence of the cranking value 
stems from the odd-quasipa~icle terms. In the lower panel, they are presented as 
ratios to the corresponding cranking values without vibrational contributions. The 
shell-filling dependence predicted in the analytic study above is realized qualitatively 
but the ratios are compressed due to the increase in the norm of wave functions. 

Fig. 2 indicates that the gamma-vibrational effect on B(E2: I + f -2) is weaker 
than that on B(E2 : I-3 I - If. See the scales of the ordinates. This is because the 
zeroth-order term proportional to (Qc:‘} is more dominant in the former than in 
the latter, in which this term is attenuated by the factor (flJ,lu)/&. In the next 

1 

‘-I,, 1 _.I 

Cs Lo Pr PmEu Tb Ho TmLu Cs Lo Pr PrnEu Tb Ho Tm Lu 

Fig. 2. Calculated ratios of B(E2: i -+ I - 2) (left) and B(E2: I -+ I - lf (right). Note that the scale is 
different in the left and right. The signature dependence is shown in the upper panel while the magnitude 
of the vibrational contribution is shown in the lower panel. In B(E2: I+ I - I), I0 = I -ix and I = 9 
were assumed (see eq. (3.1)). Other parameters are the same as in fig. 1. The values indicated by the 

solid line in the upper right figure are the same as fig. 3 of paper (I). 
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section, we will investigate the competition between the effects of static and dynamic 

triaxial deformations on B(E2: I + I - 1) based on the discussion in the present 

section. 

4. Coherent effects of static and dynamic triaxialities on B(E2 : I + I - 1) 

The vibrational effects on B(E2: I + I - 1) in axially symmetric nuclei have been 

discussed in the preceding section. In addition, static triaxial deformation also 

influences the transition rate. Here we should pay attention to the model dependence 

of its contents. In the cranking model, a triaxially deformed potential rotates around 

a principal axis and then its main effect on E2 (AI = 1) matrix elements appears 

via (Q:“‘) in eq. (3.4). Consequently the signature dependence due to it depends 

on the sign of (0:“‘) (see the dashed lines in fig. 2 of ref. ‘)). On the other hand, 

static triaxial deformation in the particle-rotor model is accompanied by the fluctu- 

ation of the rotational axis. This is the reason why the signature dependence of 

B(E2:1+1-l)iny=-15”caseof 157H~ in the particle-rotor calculation (the lower 

part of fig. 8 of ref. ‘“)) is inverted relative to the cranking result. As discussed in 

sect. 2 for the wave function, at least a part of the effect of the fluctuation can be 

taken into account by the quasiparticle-vibration coupling in our approach. Indeed, 

the gamma-vibrational contribution has inverted the signature dependence of the 

corresponding cranking result (see the solid lines in fig. 2 of ref. ‘)). 

This result indicates that the effect of the fluctuation is more important in the 

one-quasiparticle band of 15’Ho (L? =g) than that of the static deformation. In 

contrast, as shown in the upper part of fig. 8 of ref. “), the signature dependence 

is determined by the sign of (Qp’) a sin y also in the particle-rotor calculation 

when n/1 is small. This ratio, n/1, is semiclassically related to the angle between 

the direction of the total spin and the cranking axis. The quasiparticle-vibration 

coupling treats the quantum fluctuation of this angle while the geometrical factor “) 

represents a permanent deviation of this angle from zero as a c-number. In the 

following, by making use of such a merit of the quasiparticle-vibration-coupling 

approach based on the cranking model that we can separate the effect of the static 

triaxial deformation of rotating potential itself and that of the fluctuation, we discuss 

the competition between them at a typical intermediate w,,* treating y as an input 

parameter. The geometrical factor is included in fig. 3 but it has nothing to do with 

the ratios in the other figures (see appendix of ref. ‘“)). 

Numerical calculation was performed for y(pot) = *lo” and *20” under the same 
condition as the y (*Ot) = 0 case which has been discussed already. The absolute 

magnitude of B(E2: I + I - 1) is shown in fig. 3 as a function of 2, both for the 

cranking and for the quasiparticle-vibration-coupling calculations. The A -depen- 

dence of the signature-average value stems from that of (f(J, [u) and (Qr:‘) in 

eq. (3.4) (see table 1). Their ycpot) dependence can also be understood from 
expression (3.4). 
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Cs La Pr Pm Eu Tb Ho Tm Lu Cs La Pr PmEu Tb Ho Tm Lu 

Fig. 3. B(E2: I+ Z - 1) calculated at each y (p0t). Solid and broken lines indicate the (f + u) and (u+ f) 
transitions, respectively, both for the cranking and for the quasiparticle-vibration-coupling values. The 

sign of yo’ot) conforms to the Lund convention. The chemical potentials and the force strengths were 

determined in the same way as in the y = 0 case (see the caption of fig. l), but their values are slightly 

y-dependent in general. The other parameters are the same as in fig. 2. In the geometrical factor, 

{l -(K/I)‘} [ref. *‘)I, K =f for Cs and La, 2 for Pr and Pm, 2 for Eu and Tb, $ for Ho and Tm, and z 

for Lu were assumed. 

In the cranking calculation, the signature dependence is determined uniquely by 
the sign of y if the phase relation between (flJ, Iu) and (fliJY (u) is normal. But for 
cases where yCpo’) > 0, this relation, which is related closely to the signature inversion 
in quasiparticle energy and B(M1) [ref. 15)], breaks down and consequently the 
signature dependence of B(E2: I + I - 1) is also inverted at the high A. Fig. 4 shows 
that the vibrational effect itself magnifies the signature inversion in B(E2: I + I - 1) 
at the high-A region in the positive-gamma cases. Except this point and the anomaly 
at the lowest A due to the smallness of the cranking values in the negative-gamma 
cases, the global behavior of the gamma-vibrational contributions is almost indepen- 
dent of yCpot) in the present calculation, in which the force strengths were chosen 
so as to reproduce hi,, = 0.8 MeV at hw,, = 0 irrespective of yCpot). 

The competition between the effects of static and dynamic triaxialities can be 
seen in fig. 5, which is the extension of the conclusion of paper (I) to y # 0 cases. 

For Iy (pot) - 10” the signature dependence due to gamma vibration: I- , 

B(E2:f+u)SB(E2:u+f) for A S3 ACtii, (4.1) 

survives except the weak signature inversion at Tm and Lu in the positive-gamma 
case. In contrast, the ratio is always smaller than unity for yCpot) = -20” while it is 
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I I I I I 6 I I I 
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Fig. 4. Same as the lower right panel of fig. 2 but for y (pot) = *lOa and *20”. Parameters used are the 

same as in fig. 3. 

y(Pot) = + 10’ 

I I I I I I I I I 

Cs La Pr PmEu Tb Ho TmLu 
I I I 1 I I I I 1 

Cs La Pr Pm Eu Tb Ho Tm Lu 

Fig. 5. Same as the upper right panel of fig. 2 but for y w’) = + 10” and *20”. Parameters used are the 

same as in fig. 3. 
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larger than unity for y (pot) = +20° except at the signature-inversion region and at 
Cs. In other words, the effect of static gamma deformation is stronger than that of 
gamma vibration at 1-y (Pot) - 20” The zero-point amplitude y,, associated with gamma I- . 

vibration calculated at h~,,~ = 0 and y (pot) = 0 is tabulated in table 1. According to 
it, we can conclude that the selection rule (4.1) holds for the nuclei situated at the 
vibrational region, ) ycpot)) < yo, whereas the signature dependence is determined by 
the sign of #pa’) when I-y(p”‘)l is larger than yo. 

Next we discuss the meaning of y in the present approach. Three different 
standpoints are possible for how to take account of the shape polarization effect of 
the odd quasiparticle. The first is such that the polarization effect can be taken into 
account by the equilibrium shape of the even-even core and the coupling between 
the quasiparticle moving in the potential with this shape and the vibration of the 
core around this shape. This accords with the nuclear field theoretical approach. 
We have been based on this standpoint (see e.g. ref. “)). Then, due to the collective 
rotation of the core, negative-gamma deformation is appropriate for one-quasipar- 
title bands. Therefore, the upper panel of fig. 5 is adequate for this case. For 
three-quasiparticle bands of N = 90 isotones, the equilibrium y’s of the s-bands are 
positive 21*8). Th ere f ore, the situation may correspond to the lower panel of fig. 5. 
But, since the calculated collectivity of s-y phonons - gamma-vibrational phonons 
built on the s-band configuration - is weak 22*8), the pattern of the broken line in 
this figure is expected to be realized. 

The second standpoint is such that the shape polarization effect of the odd 
quasiparticle can be taken into account just by using the equilibrium shape of the 
odd-mass system, not that of the even-even core. In this case, the shape is in general 
signature dependent [see ref. 23) for example]. A numerical example calculated by 
using the method based on the isotropic-velocity-distribution condition 2’) is shown 
in fig. 6. This result can be understood as a combined effect of collective rotation 

TABLET 

B(E2 : 2, + O,), (Qb”‘) and the zero-point amplitude ‘yO calculated at 

fiw,, = 0 and yCpo’) = 0. Other parameters are the same as in fig. 1 

Z 
B(E2:2,+0,) (Qb”) “) 

(e*b*) (eb) 
Yo 

S@ 0.02155 

+a 0.02400 

dr 0.02597 

61~ 0.02882 

s&u 0.03159 

65m 0.03328 

J-fo 0.03450 

asTm 0.03618 

71Lu 0.03772 

1.073 17.5” 

1.204 16.5” 

1.333 15.5” 

1.445 15.1” 

1.533 14.9” 

1.599 14.6’ 

1.638 14.50 

1.649 14.8” 
1.640 15.2” 

“) The factor m is included. 
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~~:~~~ fi, 1 
Cs La Pr Pm Eu Tb Ho Tm Lu 

Fig. 6. Equilibrium deformations of the odd-A system calculated by means of the isotropic-velocity- 
distribution condition *‘) at ho,,, = 0.2 MeV assuming A, = A, = 1.0 MeV. Since the signature dependence 

of the calculated ~3 is weak, the signature-average value &yt’ is shown. 

and the shape driving force of the odd quasiparticle determined by the matrix 
element of Q$+“’ (see the top left panel of fig. 1). It was shown in ref. 24) that 
the calculated signature splitting of quasiparticle routhian was improved 
phenomenologically by inputting the signature-average y of the odd-mass system 
to the even-even reference configuration in the cranking description. Assume this 
approach is valid also for transition rates, then 

~(E2:f~u)~~(E2:u~f) for h ZF h&;, (4.2) 

holds qualitatively since the equilibrium yaV is negative for the high A and slightly 
positive for the low A as shown in fig. 6. Note that hLtii, does not necessarily coincide 
with herit in eq. (4.1) in general. This selection rule may be realized in some cases 
in which the vibrational effect is weak and the equilibrium y is determined pre- 
dominantly by the odd quasiparticle: the three-quasiparticle bands of N =92 
isotones, where the aligned (vi 13,2)2 produces almost no y-driving effect (see fig. 4 
of ref. **)), for example. 

The third standpoint is such that both the shape driving force of the odd quasipar- 
title and the quasiparticle-vibration coupling should be taken into account. Compar- 
ing the selection rules (4.1) and (4.2), their effects are in the opposite direction of 
each other, although the origin of both mechanisms can be traced back to the 
shell-filling dependence of the quadrupole matrix elements shown in fig. 1. 

The second approach seems insufficient because the fluctuation of the rotation 
axis is neglected there completely. At the present stage, it is an open question which 
is appropriate, the first or the third. This should be studied from the many-body 
theoretical viewpoint. 
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5. B(E2 : I + I - 1) in Yb isotopes 

The coherent effects of static and dynamic triaxialities have been studied in the 
preceding section for the rrh11,2 bands of N = 90 isotone chain in detail. This chain 
was selected originally in order to explain the relation between the result of Onishi 
et al. “) and that of Ikeda “) and ours ‘*‘) (see paper (I)). But, from the experimental 
point of view, it is difficult to reach the low-h nuclei of this chain. Referring to this 
fact, we apply our model to an experimentally accessible case, the vi13,2 bands of 
159-169~. ~~~ 

161-16’Yb, B(M1: I+ I - l)/B(E2: I+ I-2) was reported “), and 
E2/Ml mixing ratios are also known both for the (f+u)* and for the (u+ f) 
transitions in “‘Yb and 169Yb [the data were compiled in ref. ‘“)I. 

The calculation was performed at h~,,~= 0.2 MeV under the same condition as 
in ref. ‘), where the equilibrium shapes of the core, the signature splitting of 
quasiparticle routhian and the B(M1) value were presented for 161*163,167Yb. Addi- 
tional parameters are I =y and i, = 3.0 for I,,= I-i, in eq. (3.4). The signature 
dependence of B(E2: I * I - 1) is shown in fig. 7 in the same manner as in fig. 5. 
The calculated yCpot) ranges from -4.6” for ‘59Yb to -2.5” for 169Yb. Since these 
values are smaller than the zero-point amplitude yo, a similar pattern to the rhlli2 
case with y (pot) = 0 is realized. 

The slope change of the solid line at N = 91 in fig. 7 indicates the sign change 
of the matrix element of the (f + u) transition. This is measurable as the sign change 
of E2/Ml mixing ratio 6 since the behavior of the Ml matrix element is known. 
Hagemann and Hamamoto pointed out recently the sign change of S(u * f) due to 
Ml [ref. ‘“)I. In contrast, discussed at present is the sign change of S(f+ u) due to 
E2. 

2 

70Yb 

89 91 93 95 97 99 

Fig. 7. Ratio of B(E2: I + I - 1) at ho,, = 0.2 MeV for Yb isotopes. The shape and pair deformations, 

p, y, A, and A, were calculated selfconsistently adopting the isotopic-velocity-distribution condition 21) 
and G, = 2.64 hw,/A, G, = 3.51 hw,/A. For ‘6’.‘63*167Yb, they were shown in figs. 12-14 of ref. s). 

I,, = I - ix, I = 9 and ix = 3.0 were assumed. 

l Data were taken of the transition (I - l), + I, instead of I,+ (I - l), in the low-h nuclei in which 

the signature splitting is large. 
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The square of the mixing ratio is defined as 

62= T(E2:I+I-1) 

T(Ml:I+I-1)’ 
(5.1) 

with T(A) being the transition probability with multipolarity A. The reduced matrix 

element in the present model is given by 

(5.2) 

with 1~)‘s denoting intrinsic quasipartile-vibration-coupling states, and the super- 

scripts (L) and (PA) indicate the laboratory frame and principal-axis frame com- 

ponents, respectively. Referring to it, the sign of S is chosen as 

(5.3) 

with (,~l Q!!~A’lxJ in e * fm*, (xrl pU!*‘(Xi) in p.N and the transition energy E, in MeV. 

In actual calculations, 6/E, was calculated microscopically at h~,,,~ = 0.2 MeV with 

pL Uu-f 

1 

WC / 
: 
1 
I 

p 
,’ 

/’ 
I’ 

Q 0 

89 91 93 95 97 99 
N 

Fig. 8. E2/Ml mixing ratios of the (f+u) and (u+f) transitions. The latter diverges between N =93 
and N = 95 both in calculation and in experiment. Solid and broken lines indicate the calculated values 
with and without the coupling with gamma vibration, respectively. The Ml matrix elements were calculated 

assuming g, = 0.2. For ‘6’*‘63*‘67Yb, they were shown in figs. 19-21 of ref. s). For the E2 matrix elements, 
see fig. 7. In the calculated 8, ET’s were taken from the data 25*27-30). Experimental values of the (f + u) 

and (u + f) transitions are indicated by solid and open circles, respectively. 
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Fig. 9. The rotational-frequency dependence of S(f+ u)/E, calculated for ?‘b. Assumed spin I is 

indicated for each o,,, . At every CI.Q~, , ix = 3.0 was assumed. 

Z =q in the right-hand side, and &,‘s were taken from the data [ref. “) for 159Yb, 
ref. 28) for 16iYb, ref. 25) for ‘63Yb, ref. 29) for ?‘b and 16’Yb, and ref. 30) for 169Yb]; 
E,(? + q) for the (u + f) transitions and Z&(9 + 9) for the (f + u) transitions. 

The numerical result is shown in fig. 8. This indicates that the calculation presented 
here (and therefore in ref. “)) reproduces the sign change of the Ml(u+ f) matrix 
element between N = 93 and 95. At the higher-A side, 6(u + f) is reproduced well. 
But, at the lower-h side, the calculated values are larger than the experimental ones 
due to the smallness of the calculated Ml matrix elements (see figs. 19 and 20 of 
ref. “)). As for S(f+u), data are available only for 161Yb and ‘69Yb. Our calculation 
reproduces them well. The most important point is the sign change between N = 89 
and 91 due to E2 although from an experimental point of view it seems difficult to 
measure this effect. This corresponds to the slope change in fig. 7 mentioned above. 
This is another consequence of the coupling with gamma vibration. The w,,, depen- 
dence is shown in fig. 9. This illustrates that the vibrational contribution becomes 
important as the rotational contribution proportional to l/Z, (see eq. (3.1)) becomes 
small if the collectivity of the phonon survives. 

6. Concluding remarks 

We have extended the study on the gamma-vibrational effect on B(E2: I+ Z - 1) 
by means of the quasiparticle-vibration-coupling approach based on the cranking 
model and RPA developed for the y = 0 case in the preceding paper (paper (I)). The 
present paper consists of two parts. In the first half, properties of the quasiparticle- 
vibration-coupling wave function (in sect. 2) and of B(E2: I+ Z -2) (in sect. 3) 
have been studied in a parallel manner with paper (I): their behavior has been 
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studied analytically in the first-order perturbation theory with respect to the quasipar- 

title-vibration-coupling hamiltonian and then numerical calculation has been per- 

formed in order to confirm the analytic results. The signature dependence and the 

shell-filling dependence of both quantities are determined by the properties of the 

single-quasiparticle matrix elements of quadrupole operator. In relation to the 

signature dependence of the wave function, the similarity and the difference between 

the coupling schemes in the present approach, the particle-rotor model and the 

interacting boson-fermion model have also been discussed. The gamma-vibrational 

effect on B(E2:1+1-2) is weaker than that on B(E2:1+1-1). 

In the second half, the competition between the effects of static and dynamic 

triaxialities on B( E2 : I + I - 1) has been studied numerically. In sect. 4, the study 

in paper (I) has been extended directly to y # 0 cases. The effect of gamma vibration 

defeats that of static gamma deformation when )Y(~~‘)I is smaller than the zero-point 

amplitude. The meaning of y in the present approach has also been discussed. We 

have performed more realistic calculation for an experimentally accessible isotope 

chain, 159-169Yb in sect. 5. The calculation predicts that the characteristic signature 

dependence and the shell-filling dependence due to gamma vibration similar to 

those shown in paper (I) survive clearly, since the equilibrium gamma deformation 

is small. The sign change of E2/Ml mixing ratio stemming from the vibrational 

contribution has also been predicted. Experimental data are desired to test our 

prediction. 

Stimulating discussions with K. Matsuyanagi and Y.R. Shimizu at the early stage 

of the present work are acknowledged. The computer code for the cranking model 

and RPA was provided by Y.R. Shimizu. The author is indebted to Fellowships of 

the Japan Society for the Promotion of Science for Japanese Junior Scientists. This 

work was supported by the Grant-in-Aid for Scientific Research from the Ministry 

of Education, Science and Culture (No. 01790182). 

References 

1) G.B. Hagemann et al., Nucl. Phys. A424 (1984) 365 

2) D.C. Radford et al., contribution to Workshop on nuclear structure, Copenhagen, 1988 

3) I. Hamamoto and B.R. Mottelson, Phys. Lett. B132 (1983) 7 

4) A. Ikeda, Nucl. Phys. A439 (1985) 317 

5) N. Onishi et al., Nucl. Phys. A452 (1986) 71 

6) I. Hamamoto and Z. Xing, Phys. Ser. 33 (1986) 210 

7) M. Matsuzaki, Y.R. Shimizu and K. Matsuyanagi, Prog. Theor. Phys. 77 (1987) 1302 
8) M. Matsuzaki, Y.R. Shimizu and K. Matsuyanagi, Prog. Theor. Phys. 79 (1988) 836 
9) M. Matsuzaki, Nucl. Phys. A491 (1989) 433 

10) A. Ikeda and T. Shimano, contribution to Workshop on nuclear structure in the era of new 

spectroscopy part B, Copenhagen, 1989 

11) Y.R. Shimizu and K. Matsuyanagi, Prog. Theor. Phys. 70 (1983) 144 

12) M. Matsuzaki, Nucl. Phys. A509 (1990) 269 

13) I. Hamamoto, Phys. Lett. B193 (1987) 399 

14) I.N. Mikhailov and D. Janssen, Phys. Lett. B72 (1978) 303 



566 M. Matsuzaki / Signature-dependent effects (II) 

15) M. Matsuzaki, Nucl. Phys. AS04 (1989) 456 

16) N. Yoshida et al., Nuci. Phys. A503 (1989) 90 

17) H. Sagawa, private communication (1990) 

18) I. Hamamoto, Nucl. Phys. A421 (1984) 109c 

19) F. Diinau, Nucl. Phys. A471 (1987) 469 

20) M. Oshima et al., Phys. Rev. C40 (1989) 2084 

21) Y.R. Shimizu and K. Matsuyanagi, Prog. Theor. Phys. 71 (1984) 960 

22) Y.R. Shimizu and K. Matsuyanagi, Prog. Theor. Phys. 72 (1984) 799 

23) S. Frauendorf and F.R. May, Phys. Lett. B2lS (1983) 245 
24) S. Shastry et al,, Nucl. Phys. A470 (1987) 253 

25) J. Kownacki et al., Nucl. Phys. A394 (1983) 269 

26) G.B. Hagemann and I. Hamamoto, Phys. Rev. C40 (1989) 2862 

27) M.A. Lee, Nucl. Data Sheets 53 (1988) 507 
28) M.J.A. de Voigt, J. Dudek and Z. Szymadski, Rev. Mod. Phys. 55 (1983) 949 

29) N. Roy et al., Nucl. Phys. A382 (1982) 125 

30) E. Selin, A. Hjorth and H. Ryde, Phys. Ser. 2 (1970) 181 


