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ROTATIONAL CHARACTER CHANGE FROM GAMMA VIBRATION
TO WOBBLING MOTION
Masayuki Matsuzaki

Institute of Physics, University of Tsukuba, Ibaraki 305

Abstract: The character change of the gamma-vibrational excitation in rotating triaxial nu-
clei to the wobbling motion is studied paying attention to the rotational JX-mixing in its wave
function. Based on an analytic expression for the ratio of the transition amplitudes, a kind of
relation between the microscopic and macroscopic descriptions of the nuclear wobbling motion
and the static-y dependence of the interband B(E2 : AT = 1) values are discussed by means

of the RPA.

The Coriolis and centrifugal forces bring about changes in the structure of
rotating nuclei. This structure change has two aspects. One is gradual change
within each rotational band which appears as the rotational K-mixing in its wave
function. The other is abrupt change associated with quasiparticle alignments. An
interesting example of the former is the character change of the gamma vibration
with negative signature (r = exp (~ima) = —1) to the wobbling motion in rotat-
ing triaxial nuclei. This was predicted first by Mikhailov and Janssen within the
framework of the RPA!). Marshalek generalized their discussion and clarified a

kind of relation?) to the macroscopic model of Bohr and Mottelson?).

We study in this paper the A'-mixing in vibrational wave functions analytically
by evaluating the transition amplitudes to the yrast band and present another
kind of relation between the microscopic and macroscopic descriptions of the wob-
bling motion. The static- dependence of the rotational behavior of the interband
B(E2: Al = 1) values is also discussed.

First of all, we review briefly the macroscopic wobbling model presented by
Bohr and Mottelson. The creation operator of the wobbling mode is defined, aside

from an overall phase, as
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where J;’s with a superscript (PA) denote the principal-axis frame components.

The amplitudes  and y are given by

x” H .
s , (2)
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with
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in terms of the rotational frequency and moments of inertia (J, > J,.J. and

Jy # J:). The excitation energy is given as another function of them:

A..Nu. - 'NN\XrNh - ..va
JyJ:
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like that in the classical mechanics. The interband electric-quadrupole transition

rate between the wobbling and yrast states is given by

B(E2: Iy — (I~ Vy) = == (VA< Q> 2= VI<Qh >y . (5)

where (Qp and @5 are quantized along the z axis.

Next, we turn to the RPA description of the wobbling motion. The coupled
RPA dispersion equation for the pairing plus quadrupole interaction decouples to
two sectors according to the signature quantum number?). The negative-signature

sector includes QNMV (R =1, 2), which are defined as

(£) L ;
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Therefore the excitation energy « of eigen modes with » = —1.
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is determined by a twe-dimensional dispersion determinant as
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Mikhailov and Janssen showed that, when < Qwi ># 0, eq.(8) could be cast into

the form!):
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Here the angular-momentum components refer to the uniformly-rotating (UR)
frame. The first factor in eq.(9) gives the Nambu-Goldstone mode while the sec-
ond gives collective and non-collective normal modes. Marshalek obtained another

expression equivalent to A{w)D(w) — B(w)C(w) = 0 [ref.2)]:
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where

TE(W) =T (w) + V
v (13)

@) =T:w) +

Since eq.(12) is in the same form as eq.(4), the solution obtained from eq.(12) can
be a microscopic counterpart of the mode discussed by Bohr and Mottelson. But, in
the microscopic case, many normal modes are obtained from a dispersion equation
and the moments of inertia depend on w. Since the gamma vibration is the only
low-lying collective mode in the negative-signature sector in the axially-symmetric
and non-rotating limit, it seems natural that. among many normal modes. the
gamma vibration changes its character gradually to the wobbling motion through

the rotational K-mixing.

The rotational K-mixing in phonon wave functions can be measured by
quadrupole-transition amplitudes associated with each phonon. They are defined

as
T () =105 X\ Mees (14)

Henceforth we concentrated on the gamma-vibrational phonon and omit the in-
dex (n). Obviously inv is zero in axially-symmetric non-rotating nuclei and
_H.mlv\iuv_ decreases as the K-mixing develops. When < ©M+V ># 0. we can

derive an analytic expression:

7" 20, C(w)
\.NA v /\woo — Q9 UAL\_V

(15)

where C(w) and D(w) are defined in eq.(10) and a g ’s are the deformation param-

eters of a rotating potential:

h' = }.u,nr - MU D>.©ﬁ~w.u = hwrordr . (16)
KN=02

Equation (15) produces two results. First, this analytic expression makes it
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possible to discuss the relation between the microscopic and macroscopic descrip-
tions of the wobbling motion as follows. The PA-frame components of angular

momentum in eq.(1) can be expressed in terms of the operators in the UR frame

2
as

P = VR L g Q)
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where & is a quadrupole-interaction strength. Accordingly \ﬁw\ can be expressed
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The transition amplitudes, therefore, are calculated as

T = [ Xy lrea = (VB < QY > = < @4 >)ay
o7 = (@7 X lrea = 2 < Q47 >

These equations mean that the transition amplitudes have nothing to do with
the second terms in eqs.(17) which assure the algebra of the PA components (see
eq.(21)). Equating the ratio Hmi\nﬂ?v composed of eqs.(20) with eq.(15) and

requiring a kind of selfconsistency between the potential and the density as

209 _ 2 < ©m+v >
V3w —ar  3<@i> - <>

we obtain a relation between the microscopic quantities C'(w) and D{(w) and the
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macroscopic ones z and y:

Clw) a; y+z=z

Dw) ay y-=

(22)

This can be obtained also from a direct comparison of the expressions for B(E2 :
I — I—1) without the aid of eqs.(17) as follows. After substituting eq.(21), eq.(15)
can be rewritten in terms of the quadrupole moments quantized along the z axis

as

T V3<Qh>-vV2I<Qy> Cw)

= (23)
T V3<Qp>+V2<Qy> Dlv)
Therefore. according to the Marshalek’s formula®/ the B{E2) takes the form:
B(E2: Iw — (I = 1)g)
1, - Y ;
= uﬁ LTy (24)

x {V3 < Q4> (C(w) = D(w)) = V2 < @5 > (C(w) + D(w))}’
On the other hand, it is given by eq.(5) macroscopically. Consequently we obtain

eq.(22) again.

The second result of eq.(15) concerns the relative sign between ﬂi and H.ML.
Combining eq.{22) and the normalization condition on k/\«c, z* —y® =1, we find
that C(w)/D(w) is negative definite. Besides, the factor including ax’s in eq.(15)

can be expressed as a function of 4{P°!) [ref.6)]:

209 sin ~(Po%) (25
= — 29
V3ag — as sin (+(P°%) + 60°) =)

where the sign of v conforms to the Lund convention and is opposite to the conven-
tion adopted in ref.6). Consequently the sign of HMTV\HHTL is determined uniquely
by +‘P°*). This sign has never been discussed up to now although it has im-
portant physical meanings. The most interesting one is the wo-dependence of

B(E2: Iw — (I —1)y;). Since _\.N.%L\HML_ decreases as wroy increases, the B(E2)
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is a decreasing function of wrt or spin if H.,Tv\ﬁﬁlv is positive while it is an in-
creasing function if the ratio is negative as depicted in fig.1 (see eq.(24)). The
former and the latter cases are expected to be realized in nuclei with 4(P°") < @
and (P’ > 0, respectively. A numerical example of the former can be found in
ref.7). The transitions between the states with spin Iw and with (I + 1)yr, whose
direction depends on the excitation energy of the wobbling, can also be consid-
ered. In these cases the wry-dependence is opposite since they are proportional to
AHHTV + HMTJN. In addition, the phase rule of m%m.rm determines the properties of

quasiparticle-vibration-coupling wave functions of odd-A nuclei®).

URATRY

B(E2:I-1-1)

TL/T,>0

Wrot

Fig.1. A schematic drawing of the behavior of B (E2:Iw —-(I—- 1)y:) 2s a function of wegt.

In summary, we have studied the character change of the gamma-vibrational
excitation with r = —1 in rotating triaxial nuclei to the wobbling motion. By

evaluating the transition amplitudes connecting it to the yrast band, the relation
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between the microscopic and macroscopic descriptions of the nuclear wobbling
motion and the +-dependence of the rotational behavior of the B(E2 : AT = 1)

values have been clarified.
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