------------------------------------------------------------ -- The construction of the polynomial system of {6,22,17} -- ------------------------------------------------------------ We give the method constructing the polynomial system of {6,22,17} using a computer algebra system Asir. Notation: The brackets including number, e.g. [0], are prompts of Asir. Capital letters, e.g. X,Y,G, are variables of Asir. ";" represents the command terminator with screen output. "$" represents the commnad terminator without screen output. "//" represents comments. You must not input these lines. "-->" represents outputs on Asir. Before starting Asir, we must copy the file "delta.rr" to the folder "bin" in the folder installed Asir. [0] load("./delta.rr"); // The required functions are loaded by this command. [14] X=t^6+a2*t^4+a3*t^3+a4*t^2+a5*t+a6$ [15] Y=t^22+b1*t^21+b2*t^20+b3*t^19+b4*t^18+b5*t^17+b6*t^16+b7*t^15+b8*t^14 +b9*t^13+b10*t^12+b11*t^11+b12*t^10+b13*t^9+b14*t^8+b15*t^7+b16*t^6+b17*t^5 +b18*t^4+b19*t^3+b20*t^2+b21*t+b22$ [16] G=y^3-x^11+(c01+c11*x+c21*x^2+c31*x^3+c41*x^4+c51*x^5+c61*x^6+c71*x^7)*y +c00+c10*x+c20*x^2+c30*x^3+c40*x^4+c50*x^5+c60*x^6+c70*x^7+c80*x^8+c90*x^9$ //We input polynomials. X corresponds to $x$, Y to $y$ and G to $g_2$ //on page 6--7 in our preprint. [17] CL=coeflist(subst(G,x,X,y,Y),t,17)$ //subst(G,x,X,y,Y) substitutes X to x, Y to y for Polynomial G. //coeflist(P,t,17) outputs the list of coefficients of terms in polynomial P //with t-degree greater than 17. [18] PL=eliminate(CL,b1)$ //We get the polynomial system PL eliminated the variable b1 //using the linear polynomial w.r.t. b1. [19] PL=eliminate_list(PL,[c71,c61,c90,c51,c80,c41,c70,c31,c60,c21,c50, c11,c40,c01,c30])$ //We eliminate the variables c71,c61,c90,c51,c80,c41,c70,c31,c60,c21,c50, //c11,c40,c01 and c30 successively. //This function was made in order to save used memory. //We execute the following commands to eliminate variables b3,b4,b5,b6,b7,b9, //b10,b11,b13,b15,b16,b17,b19,b21 and b22. PL=eliminate(PL,b3)$ PL=eliminate(PL,b4)$ PL=eliminate(PL,b5)$ PL=eliminate(PL,b6)$ PL=eliminate(PL,b7)$ PL=eliminate(PL,b9)$ PL=eliminate(PL,b10)$ PL=eliminate(PL,b11)$ PL=eliminate(PL,b13)$ PL=eliminate(PL,b15)$ PL=eliminate(PL,b16)$ PL=eliminate(PL,b17)$ PL=eliminate(PL,b19)$ PL=eliminate(PL,b21)$ PL=eliminate(PL,b22)$ vars(PL); -->[a2,a3,a4,a5,a6,b2,b8,b12,b14,b18,b20] //As a result, we get the polynomial system with 11 variables and 18 polys. [36] PL=list_ptozp(list_subst_list(PL,[[a2,a],[a3,b],[a4,c],[a5,d],[a6,e], [b2,f],[b8,k],[b12,o],[b14,q],[b18,u],[b20,w]]))$ //We replace a2 with a, a3 with b, a4 with c, a5 with d, a6 with e, //b2 with f, b8 with k, b12 with o, b14 with q, b18 with u, b20 with w. [37] CP=car(reverse(PL))$ //We get the check polynomial CP of {6,22,17}, which is the coefficient //of term with t-degree=17 in G. [38] bsave(CP,"./6-22-17_chkpoly"); //We save the polynomial C as a binary data at the file "6-22-17_chkpoly". [39] PL=reverse(cdr(reverse(PL)))$ //We omit the last element CP from the list PL. //We get the polynomial system of {6,22,17}. [40] bsave(PL,"./6-22-17_poly_17"); //We save the polynomial system PL as a binary data at the file //"6-22-17_poly_17". =========================== end ==========================================