----------------------------------------------------------- -- The construction of the polynomial system of {6,21,4} -- ----------------------------------------------------------- We give the method constructing the polynomial system of {6,21,4} using a computer algebra system Asir. Notation: The brackets including number, e.g. [0], are prompts of Asir. Capital letters, e.g. X,Y,G, are variables of Asir. ";" represents the command terminator with screen output. "$" represents the commnad terminator without screen output. "//" represents comments. You must not input these lines. "-->" represents outputs on Asir. Before starting Asir, we must copy the file "delta.rr" to the folder "bin" in the folder installed Asir. [0] load("./delta.rr"); // The required functions are loaded by this command. [14] X=t^6+a2*t^4+a3*t^3+a4*t^2+a5*t+a6$ [15] Y=t^21+b1*t^20+b2*t^19+b3*t^18+b4*t^17+b5*t^16+b6*t^15+b7*t^14+b8*t^13 +b9*t^12+b10*t^11+b11*t^10+b12*t^9+b13*t^8+b14*t^7+b15*t^6+b16*t^5 +b17*t^4+b18*t^3+b19*t^2+b20*t+b21$ [16] G=y^2-x^7+c00+c10*x+c20*x^2+c30*x^3+c40*x^4+c50*x^5$ //We input polynomials. X corresponds to $x$, Y to $y$ and G to $g_2$ //on page 9 in our preprint. [17] CL=coeflist(subst(G,x,X,y,Y),t,4)$ //subst(G,x,X,y,Y) substitutes X to x, Y to y for Polynomial G. //coeflist(P,t,4) outputs the list of coefficients of terms in polynomial P //with t-degree greater than 4. [18] length(CL); -->38 //We get the polynomial system CL with 38 polynomials. [19] PL=eliminate(CL,b1)$ //We get the polynomial system PL eliminated the variable b1 //using the linear polynomial w.r.t. b1. //We execute the following commands to eliminate variables c50,c40,c30,c20,c10, //b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b13,b14,b15,b16,b17,b19,b20,b21. PL=eliminate(PL,c50)$ PL=eliminate(PL,c40)$ PL=eliminate(PL,c30)$ PL=eliminate(PL,c20)$ PL=eliminate(PL,c10)$ PL=eliminate(PL,b2)$ PL=eliminate(PL,b3)$ PL=eliminate(PL,b4)$ PL=eliminate(PL,b5)$ PL=eliminate(PL,b6)$ PL=eliminate(PL,b7)$ PL=eliminate(PL,b8)$ PL=eliminate(PL,b9)$ PL=eliminate(PL,b10)$ PL=eliminate(PL,b11)$ PL=eliminate(PL,b13)$ PL=eliminate(PL,b14)$ PL=eliminate(PL,b15)$ PL=eliminate(PL,b16)$ PL=eliminate(PL,b17)$ PL=eliminate(PL,b19)$ PL=eliminate(PL,b20)$ PL=eliminate(PL,b21)$ vars(PL); -->[a2,a3,a4,a5,a6,b12,b18] //As a result, we get the polynomial system with 7 variables //[a2,a3,a4,a5,a6,b12,b18] and 14 polys. [44] PL=list_subst_list(PL,[[a2,a],[a3,b],[a4,c],[a5,d],[a6,e],[b12,f],[b18,g]])$ //We replace a2 with a, a3 with b, a4 with c, a5 with d, a6 with e, //b12 with f, b18 with g. [45] C=PL[13]$ //We get the check polynomial C of {6,21,4}, which is the coefficient //of term with t-degree=4 in G. [46] bsave(C,"./6-21-4_chkpoly"); //We save the polynomial C as a binary data at the file "6-21-4_chkpoly". [47] PL=omit_nl(PL,[13])$ //We omit 13-th element C from the list PL. //We get the polynomial system of {6,21,4}. [48] bsave(PL,"./6-21-4_poly_13"); //We save the polynomial system PL as a binary data at the file //"6-21-4_poly_13". =========================== end ==========================================