Groebner basis computation for {6,22,17} on Asir
================================================

1. Download the polynomial system of {6,22,17} and the check polynomial.
6-22-17_poly_17.gz
6-22-17_chkpoly.gz

2. Expand these files.
gzip -d 6-22-17_poly_17.gz
gzip -d 6-22-17_chkpoly.gz

3. Start Asir

4. Execute the following commands on Asir:
load("gr")$ /* load of the Groebner package */
load("weight")$ /* load of automatic weight package */
P=bload("./6-22-17_poly_17")$ /* load of the polynomial system of {6,22,17} */
weight(P,vars(P),0); /* Weights computation of this polynomial system */
dp_set_weight(newvect(11,[20,18,14,12,8,6,5,4,3,2,2]))$ /* Setting the weights */
cputime(1)$ /* Display setting of cpu time */
G=nd_gr_trace(P,[w,u,q,o,k,e,d,c,b,f,a],0,-1,2)$ /* Groebner basis computation */
C=bload("./6-22-17_chkpoly")$ /* load of the check polynomial C */
N=ptozp(p_nf(C,G,[w,u,q,o,k,e,d,c,b,a,f],2))$ /* Computation of normal form of C w.r.t. G */
p_nf(N^3,G,[w,u,q,o,k,e,d,c,b,a,f],2); /* Radical membership computation */

5. We get 0 by the above command. This shows that C in radical sqrt(Id(P)).