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1. Introduction and results
This Article is a follow-up to a recent Gazette Article about the lost

boarding pass problem by Grimmett and Stirzaker [1]. According to their
book [2, 1.8.39, p.10], it seems that they recognised this lovely problem in
2000 or earlier. We quote it with suitable minor changes.

(The lost boarding pass problem) The n passengers for a
Bell-Air flight in an airplane with n seats have been told their
seat numbers. They get on the plane one by one. The first person
loses his or her boarding pass, and sits in a randomly chosen seat.
Subsequent passengers sit in their assigned seats whenever they
find them available, or otherwise in a randomly chosen empty
seat.

(I) Suppose that the first person sits in a seat chosen uniformly
at random from n available. What is the probability that
the last passenger finds his or her assigned seat to be free?

(II) Suppose that the first person sits in a seat chosen uniformly
at random except his or her assigned seat. What is the prob-
ability of the previous question?

For the time being, we assume n ≥ 2. The solutions of (I) and (II) written
in [2, 1.8.39, p.197] are

1

2
and

n− 2

2(n− 1)
, (1)

respectively. To discuss the problem we use some notation. For l ∈ {1, . . . , n}
let Nl be the random seat number of the passenger l, so that (N1, . . . , Nn) is
a permutation of (1, . . . , n). Let pi be the probability that the seat number
of the first passenger 1 is i, i.e.,

pi = P(N1 = i) for i ∈ {1, . . . , n}. (2)

Then
n∑

i=1

pi = 1, (3)
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and the assumptions of (I) and (II) are expressed as{
(I) p1 = . . . = pn = 1

n
,

(II) p1 = 0 and p2 = . . . = pn = 1
n−1

,
(4)

respectively. Let Al be the event that the passenger l sits in his or her
assigned seat, namely,

Al = {Nl = l} for l ∈ {1, . . . , n}. (5)

Since many authors investigate (I) (see [3], [4], [5]), we briefly explain some
results for (I). Both [4, (1)] and [5] state that

if (I) of (4) holds then P(Al) =
n− l + 1

n− l + 2
for l ∈ {2, . . . , n}, (6)

in particular P(An) =
1
2
. Bollobás [3, p.177] proves it without using math-

ematical expressions. Moreover Henze and Last [4, Theorem 1] show that
A2, . . . , An are independent, but a simpler proof is given by [1, Theorem 1].

In this Article, we study this problem when the first passenger randomly
chooses a seat in the sense of (2). Throughout this Article, we assume

pk > 0 for k ∈ {2, . . . , n− 1}, (7)

which includes (4), since p1 = 0 or pn = 0 is allowed. Under (7), we establish
a necessary [as well as sufficient] condition on p1, . . . , pn for the independence
of A2, . . . , An as follows.

Theorem 1: Suppose that n ≥ 3 and the first passenger chooses his or her
seat with probability p1, . . . , pn satisfying (7). Then we have

p1 = p3 = . . . = pn if and only if A2, . . . , An are independent. (8)

Note that the following example shows that the natural condition (I) of
(4) above, i.e. p1 = p2 = . . . = pn, is not necessary.

Example 1: Let n = 3, and if p1 = p3 then simple calculations show
that we have P(A2) = 2p1,P(A3) = 1/2 and P(A2 ∩ A3) = p1, which gives
P(A2 ∩ A3) = P(A2)P(A3). Hence A2 and A3 may be independent even if
p1 = p2 = p3 = 1/3 fails.
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This Article is organised as follows. Section 2 provides preliminary results
for Theorem 1. We prove Theorem 1 in Section 3, and make concluding
remarks in Section 4.

2. Preliminary results

Let us introduce notation for the conditional probabilities

αk(l) = P(Al|N1 = k) for k ∈ {2, . . . , n− 1} and l ∈ {1, 2, . . . , n},

which are well-defined because of (7). When the first passenger sits in a seat
k for k ∈ {2, . . . , n− 1}, the following lemma holds.

Lemma 1: For k ∈ {2, . . . , n− 1}, we obtain{
αk(1) = αk(k) = 0,
αk(l) = 1 for l ∈ {2, . . . , k − 1} with k ≥ 3,

(9)

and

αk(l) =
n− l + 1

n− l + 2
for l ∈ {k + 1, . . . , n}. (10)

Proof: Let us fix k ∈ {2, . . . , n− 1}. From the statement of the problem, (9)
follows. For simplicity we set Pk(·) = P(·|N1 = k). Since the passenger k
randomly chooses a seat in {1} ∪ {k + 1, . . . , n}, it turns out that

Pk(Nk = i) =
1

n− k + 1
for i ∈ {1} ∪ {k + 1, . . . , n}. (11)

When k ∈ {2, . . . , n− 2} we have

Pk(Al|Nk = i) = αi(l) for i ∈ {k + 1, . . . , n− 1} and l ∈ {i+ 1, . . . , n},
(12)

and when k = n− 1 we have

Pn−1(An|Nn−1 = n) = 0, Pn−1(An|Nn−1 = 1) = 1. (13)

Moreover
Pk(Al|Nk = 1) = 1 for l ∈ {k + 1, k + 2, . . . , n},

Pk(Al|Nk = i) = 1 for


k ∈ {2, . . . , n− 2},
i ∈ {k + 2, . . . , n},
l ∈ {k + 1, k + 2, . . . , i− 1},

Pk(Al|Nk = l) = 0 for l ∈ {k + 1, k + 2, . . . , n}.

(14)
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Then it follows that for k ∈ {2, . . . , n− 2} and l ∈ {k + 1, k + 2, . . . , n}

αk(l) = Pk(Al) =
∑

i∈{1}∪{k+1,...,n}

Pk(Al|Nk = i)Pk(Nk = i)

=
1

n− k + 1

{
Pk(Al|Nk = 1) +

l−1∑
i=k+1

Pk(Al|Nk = i)

+
n∑

i=l+1

Pk(Al|Nk = i)
}

(12),(14)
=

{
n−k

n−k+1
if l = k + 1,

n−l+1+
∑l−1

i=k+1 αi(l)

n−k+1
if l ∈ {k + 2, . . . , n}.

(15)

Although solving this equation under (9) yields (10), we prove it by induction
with k as in [2, 1.8.39, p.197]. If k = n− 1 then

αn−1(n) = Pn−1(An) = Pn−1(An|Nn−1 = 1)Pn−1(Nn−1 = 1)

+Pn−1(An|Nn−1 = n)Pn−1(Nn−1 = n)
(11),(13)
=

1

2
.

Next, we suppose that (10) is true for k ∈ {n− j, . . . , n− 1}. Then we check
(10) with k = n − j − 1 ≥ 2. If l = n − j then αn−j−1(n − j) = j+1

j+2
from

(15). If l ∈ {n− j + 1, . . . , n} then we have

αn−j−1(l) =
n− l + 1 +

∑l−1
i=n−j αi(l)

n− (n− j − 1) + 1
=

n− l + 1

n− l + 2
.

Hence we obtain (10), which completes the proof of Lemma 1.

Remark 1:

(i) Equation (10) with l = n implies αk(n) = 1
2
for k ∈ {2, . . . , n − 1}.

This suggests that if the first passenger sits in a seat k ∈ {2, . . . , n−1}
then the seats 1 and n are chosen with the same probability.

(ii) Equation (12) means that whether the first passenger or the passenger
k sits in the seat i, the conditional probability for the passenger l
does not change. We use this memoryless property when proving the
independence of A2, . . . , An in Theorem 1.
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Proposition 1: Make the same assumption of Theorem 1. Then the prob-
ability that the passenger l sits in his or her assigned seat is

P(Al) =


p1 for l = 1,
1− p2 for l = 2,

1− 1
n−l+2

∑l−1
k=2 pk − pl for l ∈ {3, . . . , n}.

(16)

Proof: If l = 1 then P(A1) = P(N1 = 1) = p1. Let us assume l ∈ {2, . . . , n−
1}. Conditioned by N1, we have

P(Al) = P(Al ∩ {N1 = 1}) +
n−1∑
k=2

P(Al|N1 = k)P(N1 = k) + P(Al ∩ {N1 = n})

= p1 +
n−1∑
k=2

αk(l)pk + pn.

Lemma 1 implies the following.

• If l = 2 then P(A2) = p1 +
∑n

k=3 pk = 1− p2.

• If l ∈ {3, . . . , n− 1} then

P(Al) = p1 +
l−1∑
k=2

αk(l)pk +
n−1∑

k=l+1

αk(l)pk + pn

(10)
= p1 +

n− l + 1

n− l + 2

l−1∑
k=2

pk +
n∑

k=l+1

pk
(3)
= 1− 1

n− l + 2

l−1∑
k=2

pk − pl.

Finally, if l = n then P(An) = p1 +
∑n−1

k=2 αk(n)pk
(10),(3)
= 1− 1

2

∑n−1
k=2 pk − pn.

Hence (16) holds, which completes the proof.

Remark 2: Proposition 1 tells us that for l ∈ {2, . . . , n} the probability
P(Al) depends only on p2, . . . , pl, and is smaller than 1 − pl, which is the
probability that the first passenger sits except the seat l, by 1

n−l+2

∑l−1
k=2 pk.

In addition it implies that

p1 = pn if and only if P(An) =
1

2
. (17)
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In fact, combining (16) with l = n and (3) yields P(An) = 1+p1−pn
2

, which
gives (17). Note that (17) corresponds to Remark 1 (i).

Example 2:

• Case (I): Equation (16) with p1 = p2 = . . . = pn = 1
n
implies (6).

• Case (II): Equation (16) with p1 = 0 and p2 = . . . = pn = 1
n−1

implies

P(Al) =
n− l + 1

n− l + 2
− 1

(n− 1)(n− l + 2)
for l ∈ {2, . . . , n},

whose form suggests the difference from (6).

We remark that (1) follows from Cases (I) and (II) with l = n, respectively.

3. Proof of Theorem 1
Suppose p1 = p3 = . . . = pn. Then we show

P(Aj|Ac
i) = P(Aj) for 2 ≤ i < j ≤ n, (18)

noting that P(Aj|Ac
i) is well-defined since P(Ac

i) ≥ pi > 0 for i ∈ {2, . . . , n−
1}. It follows that

P(Aj|Ac
i) = P(Aj|N1 = i) = αi(j)

(10)
=

n− j + 1

n− j + 2
, (19)

where the first equality holds for the same reason as (12). Using (16) and

p2 = 1− (n− 1)p1, (20)

we have

P(Aj) =
n− j + 1

n− j + 2
for j ∈ {3, . . . , n}, (21)

because

• if j ∈ {3, . . . , n− 1} then P(Aj)
(16)
= 1− p2+(j−3)p1

n−j+2
− p1

(20)
= n−j+1

n−j+2
,

• if j = n then P(An)
(17)
= 1

2
.
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Therefore (18) holds, which implies that Ai and Aj are independent by using
[2, 1.5.1, p.3]. Similarly, to show that A2, . . . , An are independent, it is
sufficient to prove for any m ∈ {2, 3, . . . , n− 2} and 2 ≤ j0 < j1 < j2 < . . . <
jm ≤ n,

P

(
m∩
s=1

Ac
js

∣∣∣∣∣ Ac
j0

)
=

m∏
s=1

P
(
Ac

js

)
, (22)

which follows from

LHS of (22)
(12)
= Pj0

(
m∩
s=1

Ac
js

)
= Pj0

(
Ac

jm

∣∣∣∣∣
m−1∩
s=1

Ac
js

)
Pj0

(
m−1∩
s=1

Ac
js

)
(12)
= Pjm−1

(
Ac

jm

)
Pj0

(
m−1∩
s=1

Ac
js

)
= {1− αjm−1(jm)}Pj0

(
m−1∩
s=1

Ac
js

)

=
m∏
s=1

{1− αjs−1(js)}
(10)
=

m∏
s=1

1

n− js + 2

(21)
= RHS of (22).

Note that Pj0

(
Ac

jm

∣∣ ∩m−1
s=1 Ac

js

)
is also well-defined because it turns out that

Pj0

(∩m−1
s=1 Ac

js

)
> 0 from (7). Hence A2, . . . , An are independent.

Next, we suppose that A2, . . . , An are independent. Then (21) is obtained
by (18) and (19). Hence (16) yields 1− 1

n−l+2

∑l−1
k=2 pk − pl =

n−l+1
n−l+2

, so that

pl =
p1 + pl + . . .+ pn

n− l + 2
for l ∈ {3, . . . , n}.

If l = n then p1 = pn. If l = n − 1 then pn−1 = p1+pn−1+pn
3

, which implies
pn−1 = p1 = pn. Repeating this procedure leads to p1 = p3 = . . . = pn, which
completes the proof.

4. Conclusion
Let us remark that the condition (7) is required for Theorem 1. Indeed,

if (7) is violated then A2, . . . , An are independent for p1 = 1 or pn = 1 which
does not satisfy p1 = p3 = . . . = pn.

Finally, it would be interesting to have an intuitively clear reason why
the value of p2 is independent of the result of Theorem 1.
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