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1. Introduction
Suppose that a coin is tossed repeatedly until the same number of Heads

as Tails. We consider a game that a player gets X yen if the number of coin
tosses is X. For example, if TH, HHTT and TTHTHH then X = 2, X = 4
and X = 6, respectively, where H denotes Heads and T denotes Tails. Table
A below shows a result of 20 students in a classroom doing this experiment.

Student No. 1 2 3 4 5 6 7 8 9 10
X 2 6 20 6 6 2 2 1052 2 2

Student No. 11 12 13 14 15 16 17 18 19 20
X 34 22 2 2 32 6 48 2 6 2

Table A

It is reasonable that 9 students have X = 2, while X = 1052 of the 8th
student seems too large. Is this unusual in the sense of statistics? Referring
the St. Petersburg game, Treviño [1] reported several properties of X, and il-
lustrated numerical results. However the calculations are a little troublesome
even with computers, because they are exact values.

In this Note, after remarking them, we give some approximate results
with easy calculations using several results of limit distributions. Moreover
we study medians of both the sample mean and the maximum with respect
to X.

2. The Feller game vs the St. Petersburg game
This game is written in Feller’s textbook [2, Section X.1, page 246]. Hence

Matsumoto and Nakata [3] called it the Feller game. The distribution of X
is

P(X = 2k) =
2

4kk

(
2k − 2

k − 1

)
=

1

2k − 1

(
2k

k

)
2−2k. (1)

The first equality is due to [1, Theorem 1], and the second one is given by [2,
Equation (3.7), page 78] [3, Equation (1)], or [4, Exercise 3.10.1, page 83].

By the way, the St. Petersburg game, which was firstly published by
Daniel Bernoulli (1738) in Saint Petersburg (Russia), is well-known as follows
(see [3, Section X.4, page 251]). Consider that a coin is tossed repeatedly
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until it falls Heads. If it happens at the kth trial then the player gets 2k yen.
Letting Y be the payoff of the game, we have

P(Y = 2k) = 2−k for k = 1, 2, . . . (2)

For these games it follows that E(X) = E(Y ) = ∞. In fact,

E(Y ) = 2

(
1

2

)
+ 22

(
1

2

)2

+ · · · = ∞.

Similarly, direct proofs of E(X) = ∞ are given in [1, Theorem 2] and [3,
Lemma 2]. Note that it can be interpreted as a simple random walk starting
from the origin. Indeed, it follows from the fact the random walk returns to
the origin with probability one, but the expected return steps are infinite.

It should be pointed out that asymptotic properties of the tail prob-
abilities for X and Y are different. The Stirling formula, which is n! ∼√
2πn(n/e)n, yields

P(X > x) ∼
√

2

π
x−1/2, (3)

where f(x) ∼ g(x) denotes limx→∞ f(x)/g(x) = 1. Equation (3) follows from
[3, Equation (23)]. By contrast, we have

P(Y > x) = 2{log2 x}x−1 for x > 2, (4)

whose validation is also given in [3, Equation (3)], where {x} is the fractional
part of x > 0. In other words, while it follows that limx→∞

√
xP(X > x) =√

2/π, there does not exist a limit of xP(Y > x) = 2{log2 x}. Hence it is not
so easy to investigate the limit distribution of Y compared to X. Details are
discussed in [3].

3. Feller games for n students
3.1. The number of students with more than m trials

We proceed with the investigation of Treviño [1, page 38] that each of
n students tosses a coin until they each have the same number of Heads
as Tails. For i = 1, . . . , n let Xi be the number of coin tosses of the ith
student. Note that X1, . . . , Xn are independent and identically distributed
(i.i.d.) with the common distribution (1). We define

Ii = Ii(m) =

{
1, if Xi ≥ m,
0, otherwise

and Wn = Wn(m) =
n∑

i=1

Ii, (5)
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respectively. Then {Ii} are also i.i.d., and can be regarded as other coin
tosses with success probability

pm = E(I1) = P(I1 = 1) = P(X ≥ m) =
∞∑

k=⌈m/2⌉

1

2k − 1

(
2k

k

)
2−2k, (6)

where ⌈x⌉ denotes the least integer greater than or equal to x > 0. Hence
it turns out that Wn is binomially distributed with parameters n and pm. A
list of numeric probabilities

P(Wn ≥ 1) = 1− (1− pm)
n (7)

for m and n is illustrated in [1, Table 1, page 39], which are the probabilities
that at least one of the students tosses a coin m or more trials. For example,
when m = 1000 and n = 20, we can see P(W20(1000) ≥ 1) = 0.4004. Hence
X = 1052 in Table A is not so outrageous.

Moreover a list of integers

am = min

{
n ≥ 1

∣∣∣∣ P(Wn(m) ≥ 1) ≥ 1

2

}
(8)

for m is also illustrated in [1, Table 2, page 39], which are the numbers of
students needed to have a better than even chance that at least one of them
will toss the coin at least m trials. For example, when m = 1000, we can see
a1000 = 28. Hence if the number of students in the classroom is 28 or more,
the probability that some of them toss 1000 or more times is at least 1/2.

3.2. Poisson approximations for Wn

Since pm satisfies the approximation

pm ∼
√

2

π
m−1/2 (9)

when m is large enough because of (3), the event {X ≥ m} may be consid-
ered as a rare event in this case. In addition, for large n = n(m) satisfying
that n/

√
m is near a positive constant, we have the following Poisson ap-

proximation.

P(Wn = l) ∼ e−npm
(npm)

l

l!
for l = 0, 1, . . . . (10)
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Remark: For the Birthday problem, we have good Poisson approximations
(see [2, Example (b), page 105]). It follows from the facts that the number
of trials, which are

(
n
2

)
for n students, is large, and the success probability,

which is 1/365, is small. Note that
(
n
2

)
is large even if n is not so large.

Theorem 1: If n and m satisfy (9) and (10) then we have the following
approximations.

1. The probabilities of (7) are approximated by

P(Wn ≥ 1) ∼ 1− e
−
√

2
π

n√
m . (11)

2. The integers of (8) are approximated by

am ∼
⌈
(log 2)

√
πm

2

⌉
. (12)

Proof:

1. Equations (10) and (9) yield

P(Wn ≥ 1) = 1− P(Wn = 0)
(10)∼ 1− e−npm (9)∼ 1− e

−
√

2
π

n√
m .

2. We solve the inequality P(Wn ≥ 1) ≥ 1/2 for large n. Since 1−e−npm ≥
1/2, we have

am ∼
⌈
log 2

pm

⌉
(9)∼

⌈
(log 2)

√
πm

2

⌉
.

Note that if n√
m

is positive small then P(Wn ≥ 1) ∼
√

2
π

n√
m
. The cal-

culation of both this and (12) would be possible with a simple calculator.
Decimal outputs of (11) for m and n are near values of [1, Table 1, page 39].
Similarly, integer outputs of (12) for m is equivalent to [1, Table 2, page 39].

3.3. The median of the sample mean
For i.i.d. random variables X1, . . . , Xn which are the trial numbers of

coin tosses of n students, we investigate the sample mean X = Sn/n, where
Sn =

∑n
i=1 Xi. Since E(X1) = ∞, we have E(X) = ∞. Therefore it is
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difficult even to roughly estimate X. Hence we examine the median of X
instead of E(X). In [2, Equation (1.7), page 246], Feller calculated

P

(
Sn

n2
< x

)
∼ 2

(
1− Φ

(
1√
x

))
for x > 0, (13)

where Φ(x) =
∫ x

−∞ e−t2/2/
√
2πdt. The right hand side of (13) is called the

one-sided stable distribution with index 1/2 or the Lévy distribution, whose
probability density function is e−1/(2x)/(

√
2πx3/2) for x > 0 (see [3, The-

orem 1 and references there in]). Considering (13), we solve the equation

2
(
1− Φ

(
1√
x

))
= 1

2
with x > 0. The unique solution is x = (1/Φ−1(0.75))

2 ∼
2.198. Hence it turns out that

P
(
X < 2.198n

)
= P

(
Sn < 2.198n2

)
∼ 1

2
.

Thus we have the following theorem.

Theorem 2: The median of X is near 2.198n.

3.4. The median of the maximum
We also consider the maximumMn forX1, . . . , Xn, whereMn = max{X1, . . . , Xn}.

Since E(Mn) = ∞, we study the median of Mn corresponding to X. It is
known that

P

(
Mn

n2
< x

)
∼ exp

(
−x− 1

2

)
for x > 0, (14)

which is called the Fréchet distribution with index 1/2 (see [3, Equation

(14)]). Considering (14), we solve the equation exp
(
−x− 1

2

)
= 1

2
with x >

0. The unique solution is x = (log 2)−2 ∼ 2.081. Hence it turns out that
P (Mn < 2.081n2) ∼ 1

2
. Thus we have the following theorem.

Theorem 3: The median of Mn is near 2.081n2.

4. Concluding remarks
Be careful when letting students play the Feller games in the classroom.

Indeed, many students will finish in a small number of trials, but a few
students may not finish during class hours.
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